
COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

A CONIC OPTIMIZATION APPROACH FOR SOLVING

MATRIX APPROXIMATION PROBLEMS

DISSERTATION THESIS

2023 Mgr. Terézia FULOVÁ

COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

A CONIC OPTIMIZATION APPROACH FOR SOLVING

MATRIX APPROXIMATION PROBLEMS

DISSERTATION THESIS

Study program: Applied Mathematics

Study field: Mathematics

Department: Department of Applied Mathematics and Statistics

Supervisor: doc. RNDr. Mária Trnovská, PhD.

2023 Mgr. Terézia FULOVÁ

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Mgr. Terézia Fulová
Study programme: Applied Mathematics (Single degree study, Ph.D. III. deg.,

full time form)
Field of Study: Mathematics
Type of Thesis: Dissertation thesis
Language of Thesis: English
Secondary language: Slovak

Title: A conic optimization approach for solving matrix approximation problems

Annotation: As a result of the interior-point methods development, the conical structure
has become particularly desirable for some types of cones, thanks to the
efficiency of the proposed algorithms. Conic problems can also be considered
as an approximation tool for solving many non-convex problems. Exploring
the possibilities for conic relaxation, the dual properties and the applications
of conic programming in various fields is an interesting area of research. The
dissertation thesis investigates matrix approximation problems in a unified
framework, proposes a general conic optimization approach for their solution
and demonstrates the results on specific sub-classes and various applications.

Tutor: doc. RNDr. Mária Trnovská, PhD.
Department: FMFI.KAMŠ - Department of Applied Mathematics and Statistics
Head of
department:

doc. Mgr. Igor Melicherčík, PhD.

Assigned: 24.01.2019

Approved: 24.02.2021 prof. RNDr. Daniel Ševčovič, DrSc.
Guarantor of Study Programme

Student Tutor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Mgr. Terézia Fulová
Študijný program: aplikovaná matematika (Jednoodborové štúdium,

doktorandské III. st., denná forma)
Študijný odbor: matematika
Typ záverečnej práce: dizertačná
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: A conic optimization approach for solving matrix approximation problems
Kónický optimalizačný prístup na riešenie problémov aproximácie matíc

Anotácia: V dôsledku rozvoja metód vnútorného bodu sa kónická štruktúra stala
žiadanou najmä pre niektoré typy kužeľov, a to vďaka efektívnosti navrhnutých
algoritmov. Kónické úlohy možno tiež považovať za aproximačný nástroj
na riešene mnohých nekonvexných úloh. Skúmanie možností relaxácie
pomocou kónických úloh, duálnych vlastností a aplikácie kónického
programovania v rôznych odvetviach je zaujímavou oblasťou výskumu.
Dizertačná práca skúma maticové aproximačné problémy v jednotnom rámci,
navrhuje všeobecný prístup na ich riešenie pomocou kónickej optimalizácie
a demonštruje výsledky na konkrétnych podtriedach a rôznych aplikáciách.

Školiteľ: doc. RNDr. Mária Trnovská, PhD.
Katedra: FMFI.KAMŠ - Katedra aplikovanej matematiky a štatistiky
Vedúci katedry: doc. Mgr. Igor Melicherčík, PhD.

Dátum zadania: 24.01.2019

Dátum schválenia: 24.02.2021 prof. RNDr. Daniel Ševčovič, DrSc.
garant študijného programu

študent školiteľ

Acknowledgements I would like to express my sincere gratitude to my supervisor doc.

RNDr. Mária Trnovská, PhD. for her guidance, assistance, and encouragement. Without

her invaluable insights and constructive feedback, this work would not have been possible.

I would like to extend my gratitude to my family for their unconditional support

throughout my academic journey. I am also grateful to my friends for being there to

cheer me on and keep me motivated.

Last but not least, I would like to express my heartfelt thanks to my fiance for his

boundless love and unwavering support. His belief in my abilities has been a constant

source of motivation for me to persevere and complete this dissertation thesis.

Abstract

FULOVÁ, Terézia: A conic optimization approach for solving matrix approximation prob-

lems [Dissertation Thesis], Comenius University in Bratislava, Faculty of Mathematics,

Physics and Informatics, Department of Applied Mathematics and Statistics; Supervisor:

doc. RNDr. Mária Trnovská, PhD., Bratislava, 2023, 150 p.

Matrix approximation problems are a subclass of constrained norm minimization prob-

lems. In this thesis, we handle a generalized formulation of matrix approximation prob-

lems to cover also well-known Procrustes problems. In general, matrix approximation

problems have not been analyzed in a unified framework. The existing methods, which

are designed to solve particular subclasses with a special structure of the feasibility set

and a specific matrix norm in the objective. We aim to show that matrix approximation

problems can be cast as conic programs with possible rank constraints. Therefore, we

analyze various methods for solving rank-constrained optimization problems and propose

a new solution algorithm based on using modified existing methods. Specifically, we ad-

dress the problem of finding the nearest low-rank correlation matrix as well as different

types of Procrustes problems, such as orthogonal, oblique, and semidefinite cases. We

introduce a conic reformulation and demonstrate the correctness of this approach and

the performance of our algorithm in numerous numerical experiments simulating real-life

problems.

Keywords: conic optimization, matrix approximation problems, rank-constrained

optimization problems, nearest correlation matrix, Procrustes problems

Abstrakt v štátnom jazyku

FULOVÁ, Terézia: Kónický optimalizačný prístup na riešenie problémov aproximácie

matíc [Dizertačná práca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky

a informatiky, Katedra aplikovanej matematiky a štatistiky; školiteľ: doc. RNDr. Mária

Trnovská, PhD., Bratislava, 2023, 150 s.

Úlohy aproximácie matíc tvoria podtriedu ohraničených úloh minimalizácie normy.

V práci sa zaoberáme zovšeobecnenou formuláciou úloh aproximácie matíc s cieľom pokryť

aj známe Procrustove úlohy. Vo všeobecnosti úlohy aproximácie matíc zatiaľ neboli

analyzované v jednotnom rámci. Existujúce metódy na ich riešenie boli navrhnuté pre

špeciálne podtriedy, kde má množina prípustných riešení špeciálnu štruktúru a účelová

funkcia je definovaná pomocou konkrétnej maticovej normy. Naším cieľom je ukázať, že

úlohy aproximácie matíc sa dajú naformulovať a riešiť ako kónické úlohy s prípadným

ohraničením na hodnosť. Preto analyzujeme aj niekoľko metód na riešenie optimaliza-

čných úloh s ohraničením na hodnosť s cieľom modifikovať ich a navrhnúť nový algorit-

mus na ich riešenie. Podrobnejšie sa venujeme úlohe hľadania najbližšej korelačnej matice

nízkej hodnosti a niekoľkým typom Procrustových úloh, vrátane ortogonálnych, šikmých,

a semidefinitných. Uvádzame ich kónickú reformuláciu a demonštrujeme správnosť tohto

prístupu a správanie navrhnutého algoritmu pri riešení praktických úloh.

Kľúčové slová: kónická optimalizácia, úlohy aproximácie matíc, optimalizačné úlohy

s ohraničením na hodnosť, najbližšia korelačná matica, Procrustove úlohy

Contents

List of Figures 11

List of Tables 12

List of symbols 17

Introduction 17

1 Motivation 20

2 Conic optimization tools for norm minimization and quadratically con-

strained problems 27

2.1 Convex optimization and conic linear programming 27

2.1.1 Semidefinite programming . 29

2.2 Quadratically constrained problems . 30

2.3 Norm minimization problems . 32

2.4 Summary . 38

3 Rank-constrained optimization problems 39

3.1 Convex relaxation . 41

3.2 Methods for solving rank-constrained feasibility problems 42

3.2.1 Trace heuristic . 43

3.2.2 Log-det heuristic . 44

3.2.3 Rank reduction algorithm . 46

3.2.4 Convex iteration as a rank reduction algorithm 50

3.3 Methods for solving rank-constrained optimization problems 52

3.3.1 Bi-criterion heuristics . 52

3.3.2 Modified heuristics . 54

3.3.3 Low-rank solutions of the convex relaxation 55

3.3.4 Proposed bisection algorithm . 57

3.3.5 Computational aspects of the bisection algorithm 60

8

4 Correlation matrix approximation 62

4.1 Literature review . 63

4.2 SDP reformulation of the NCM problem 65

4.3 SDP reformulation of the rank-constrained NCM problem 66

4.4 Numerical results . 69

4.4.1 Illustrative example . 69

4.4.2 Solving the NCM problem . 75

4.4.3 Solving the rank-constrained NCM problem 76

4.4.4 Comparison of methods for solving the rank-constrained feasibility

problems . 77

4.4.5 Bisection algorithm performance . 80

4.4.6 Choice of relative weights . 80

5 Procrustes problems 83

5.1 Orthogonal Procrustes problems . 86

5.1.1 Known approaches for solving OPPs 87

5.1.2 The proposed conic approach . 89

5.1.3 Numerical results . 91

5.1.3.1 Application - Evaluating the accuracy of an ancient map . 91

5.1.3.2 Standard balanced OPPs with the Frobenius norm and the

spectral norm in the objective 93

5.1.3.3 Application - Feature extraction 95

5.1.3.4 Standard unbalanced OPPs with the Frobenius norm in

the objective . 97

5.1.3.5 Weighted OPPs with the Frobenius norm, l1 norm, l∞

norm and spectral norm in the objective 99

5.1.3.6 Balanced OPPs with additional linear constraints 104

5.1.3.7 Extension - Graph isomorphism problem as a two-sided OPP107

5.2 Oblique Procrustes problems . 109

5.2.1 The proposed conic approach . 111

5.2.2 Numerical results . 113

5.2.2.1 Standard oblique Procrustes problems 113

9

5.2.2.2 Weighted oblique Procrustes problems with the Frobenius

norm, l1 norm, l∞ norm and spectral norm in the objective 114

5.3 Other types of Procrustes problems . 116

5.3.1 Semidefinite Procrustes problems 116

5.3.1.1 The proposed conic approach 117

5.3.1.2 Numerical results . 118

5.3.2 Projection Procrustes problems . 118

5.3.2.1 The proposed conic approach 119

5.3.2.2 Numerical results . 119

Conclusion 121

References 125

Appendix 135

A Matrix theory 135

A.1 Positive semidefinite matrices . 135

A.2 Hadamard product . 136

B Conic optimization 137

B.1 Duality in conic optimization . 137

B.2 Eigenvalue optimization . 138

B.3 Transformations of norm minimization problems 139

B.4 Representations of nonconvex quadratic constraints 142

C Convex envelope of the rank function 144

C.1 Definition of the convex envelope . 144

C.2 Trace as the convex envelope of the rank function 144

D Rank minimization heuristics 148

D.1 Rank minimization problem with a general matrix variable 148

D.2 Concavity of the log-det function . 149

D.3 Local minimization of the log-det function 150

10

List of Figures

1 Historical map of the Worcestershire region in England 23

2 Locations from the ancient map and the modern map 24

3 Examples of images from the Yale data set. 25

4 Illustration of the rank function approximation by the trace function, and

the log-det function . 45

5 Trade-off between the objective function and rank illustrating searching for

a low-rank solution among optimal solutions of the semidefinite relaxation. 56

6 Trade-off between the objective function and rank illustrating searching for

a low-rank solution yielding an optimal value in a specific interval. 57

7 Illustration of the bisection algorithm. 60

8 Optimal values yielded by different algorithms in solving Example 1.1 . . . 70

9 Trade-off between the objective and rank obtained by the bisection algo-

rithm in solving Example 1.1 . 74

10 Trade-off graph between the rank and the objective function value of the

solution found by the rank reduction algorithm and the convex iteration. . 82

11 Transformed locations obtained as a result of solving Example 1.2 92

12 Computational time reached by the SDP relaxation in solving standard

balanced OPPs with the spectral norm in the objective for different sizes

of input data . 94

13 Example of isomorphic graphs. 107

14 Computational time reached by the SDP relaxation in solving SDPPs with

the Frobenius norm in the objective for different sizes of input data 118

15 Computational time reached by the SDP relaxation in solving projection

PPs with the Frobenius norm in the objective for different sizes of input data120

16 Illustration of the convex envelope of a function 144

17 Illustration of the trace as a convex envelope of rank 145

11

List of Tables

1 Stock prices with missing values . 22

2 Quadratic constraints representation via semidefinite, linear, and rank con-

straints . 33

3 Matrix norms definitions . 34

4 Results obtained by the bisection algorithm in solving Example 1.1 73

5 Comparison of the existing methods and the SDP reformulation in solving

NCM problems . 76

6 Results obtained by the SDP relaxation, the convex iteration and the bi-

section algorithm in solving rank-constrained NCM problems of different

sizes . 77

7 Results obtained by the SDP relaxation, the log-det heuristic and the bi-

section algorithm in solving rank-constrained NCM problems of different

sizes . 78

8 Comparison of methods representing the conic approach in solving rank-

constrained NCM problems . 79

9 Results obtained by the bisection algorithm in solving rank-constrained

NCM problems . 81

10 Comparison of the rank reduction algorithm and the convex iteration re-

garding various choices of relative weights 82

11 Solution methods for different types of Procrustes problems 85

12 Comparison of the explicit solution based on the singular value decompo-

sition and the SDP relaxation in solving Example 1.2 92

13 Comparison of the explicit solution and the SDP relaxation in solving stan-

dard balanced OPPs with the Frobenius norm in the objective 93

14 Accuracy of the optimal values yielded by solutions of the SDP relaxation

in solving standard balanced OPPs with the spectral norm in the objective

for different sizes of input data . 94

12

15 Accuracy of the orthogonal solutions obtained by the SDP relaxation in

solving standard balanced OPPs with the spectral norm in the objective

for different sizes of input data . 94

16 Comparison of the OLSR algorithm and the proposed conic approach in

solving Example 1.3 . 96

17 Comparison of the existing methods and the proposed conic approach in

solving standard unbalanced OPPs with the Frobenius norm in the objective 98

18 Results obtained by the proposed conic approach in solving weighted OPPs

with the Frobenius norm in the objective 100

19 Results obtained by the proposed conic approach in solving weighted OPPs

with the l1 norm in the objective . 101

20 Results obtained by the proposed conic approach in solving weighted OPPs

with the spectral norm in the objective . 102

21 Results obtained by the proposed conic approach in solving weighted OPPs

with the l∞ norm in the objective . 103

22 Results obtained by the SDP relaxation in solving standard balanced OPPs

with the Frobenius norm in the objective and additional linear constraints 106

23 Results obtained by the SDP relaxation in solving standard balanced OPPs

with the l1 norm in the objective and additional linear constraints 106

24 Results obtained by the SDP relaxation, the modified log-det heuristic and

the modified convex iteration in solving two-sided OPPs representing the

graph isomorphism problem . 110

25 Comparison of an existing method and the proposed conic approach in

solving standard ObPPs with the l1 norm in the objective 114

26 Comparison of an existing method and the proposed conic approach in

solving standard ObPPs with the Frobenius norm in the objective 114

27 Results obtained by the proposed conic approach in solving weighted ObPPs

with the Frobenius, l1, ł∞ and spectral norm in the objective 115

28 Accuracy of the optimal values yielded by solutions of the SDP relaxation

in solving SDPPs with the Frobenius norm in the objective for different

sizes of input data . 117

13

29 Accuracy of the optimal values yielded by solutions of the SDP relaxation

in solving projection PPs with the Frobenius norm in the objective for

different sizes of input data . 119

30 Accuracy of the projection criterion obtained by the SDP relaxation in solv-

ing projection PPs with the Frobenius norm in the objective for different

sizes of input data . 120

14

List of symbols

R set of all real numbers

N+ set of all positive integers

Rn set of all n-dimensional vectors

Rn
+ nonnegative orthant

Rm×n set of all real m × n matrices

Sn set of all n × n symmetric matrices

Sn
+ cone of all n × n symmetric positive semidefinite matrices

In identity matrix n × n

1n unit n-dimensional column vector, i.e. 1n = (1, 1, ..., 1)T

X ◦ Y Hadamard product of X and Y , defined in Definition A.4

rank(X) rank of matrix X

ε-rank(X) numerical rank of matrix X, defined in Definition 3.1

tr(X) trace of matrix X

diag(X) column vector of diagonal entries of X

Diag(x) diagonal matrix having vector x on diagonal

svec(X) symmetric vectorization of symmetric matrix X defined as (14)

min{...} minimum of elements in braces

X−1 inverse of a square matrix X satisfying XX−1 = I

xT y scalar product of vectors x and y

⟨X, Y ⟩ scalar product of symmetric X and Y , defined as ⟨X, Y ⟩ = tr(XY)

⌊x⌋ floor integer of a real number x

⌈x⌉ ceiling integer of a real number x

λi i-th eigenvalue of a matrix

Λ diagonal matrix with eigenvalues of a matrix on its diagonal

λmax the largest eigenvalue of X

σmax the largest singular value of X

15

|x| absolute value of a number x

∥x∥1 l1 norm of a vector x, ∥x∥1 = ∑n
i=1 |xi|

∥X∥F Frobenius norm of a matrix X, defined in Table 3

∥X∥1 l1 norm of a matrix X, defined in Table 3

∥X∥2 spectral (l2) norm of a matrix X, defined in Table 3

∥X∥∞ l∞ norm of a matrix X, defined in Table 3

X ⪰ 0 X is positive semidefinite, defined in Definition A.1

X ⪰ Y Löwner partial ordering, i.e., X ⪰ Y ⇔ X − Y ⪰ 0

C convex set

K convex cone

L linear map

N (X) null space of matrix X, defined as {u | Xu = 0}

A ⊆ B A is a subset of B

cenv f convex envelope of functionf

k desired rank of a solution, k ∈ N+

G Gram matrix defined as G = XT X

P permutation matrix

P feasibility set of (1)

A, B, C, W given data of (1)

n, m, p, q numbers of rows/columns of the data

f(X) objective function of (1)

g(X) linear objective function of a general rank-constrained problem (30)

α relative weight of bi-criterion problems

γ parameter of modified methods

M maximum number of allowed "constant-rank" iterations in algorithms

ε > 0 tolerance constant for the numerical rank

δ > 0 small regularization constant for log-det heuristic

ρ > 0 tolerance constant for stopping criterion of the bisection algorithm

16

Introduction

Matrix approximation problems search for the best possible approximation of a given

matrix by solving a minimization program, where the objective function uses a specific

matrix norm and the constraints represent requirements put onto the matrix variable.

Besides a large scale of standard matrix approximation problems, this thesis also covers

matrix completion problems and well-known Procrustes problems. The significance of

solving matrix approximation problems lies in their diverse applications in fields such

as data analysis, engineering, machine learning, computer vision, signal processing, and

finance. Therefore, analyzing these problems and refining their solution algorithms can

contribute to the advancement of these relevant fields.

Norm minimization problems have been studied since the nineteenth century when

Legendre [67] and Gauss [49] introduced the first methods to minimize least squares,

which is now a standard method in regression analysis. Today, unconstrained norm mini-

mization problems can be solved by many modern unconstrained optimization techniques.

Taking into account specific norms, even closed-form solutions are known [19, §1.2]. Norm

minimization problems that involve linear or semidefinite constraints can be solved us-

ing interior point methods, which were first introduced by Karmarkar [63] in 1984 for

linear programming and have since been extensively studied. Efficient polynomial-time

algorithms have also been introduced for semidefinite programs [4, 78, 64] and are now

implemented in numerous solvers [8, 58, 56, 55]. It is common for the feasibility set of

a norm minimization problem to involve even quadratic constraints, which can be either

directly rewritten or relaxed as semidefinite constraints.

In this thesis, we also deal with low-rank matrix approximations, which are an active

research area. The rank constraint often arises in real-life applications, since it can model

the inherent structure or complexity of data or processes [29]. However, solving rank-

constrained matrix approximation problems can be challenging as they are nonconvex and

NP-hard ([36, 91]). Since the twentieth century, they have been solved using methods

based on singular value decomposition [86, 32], later by alternating projections [22]. In the

early 2000s, rank minimization heuristics and rank reduction algorithms were designed

to work in practice [37, 27, 68]. In recent years, exact algorithms based on symbolic

17

computation [77] and mixed projections [13] have gained popularity, underscoring the

significance of this topic in modern research.

In general, matrix approximation problems have not been analyzed in a unified frame-

work due to the diverse structure and properties of particular subclasses. Existing algo-

rithms designed for specific subclasses often cannot be extended to solve other subclasses,

resulting in numerous subclasses that lack a solution algorithm. Therefore, the main con-

tribution of this thesis is the introduction of a unified conic optimization framework for

solving matrix approximation problems constrained by linear, semidefinite, quadratic, or

rank constraints. Although the conic optimization approach may not be as effective as

methods tailored to specific subclasses, it offers the advantage of also covering nontrivial

subclasses, such as weighted, and oblique Procrustes problems. Furthermore, unlike the

existing approaches, the proposed conic optimization framework is not limited to a spe-

cific choice of the matrix norm in the objective, highlighting its potential to contribute to

advancements in the field of matrix approximation problems.

As a consequence, our objective is to demonstrate the performance of the proposed

approach in solving selected subclasses that arise in applications, such as the problem of

finding the nearest low-rank correlation matrix and various types of Procrustes problems.

Additionally, as the proposed approach may require solving rank-constrained optimization

problems, our secondary objective is to modify the existing algorithms and design a new

solution algorithm. We evaluated the performance of the proposed algorithm through

extensive numerical experiments.

This thesis is divided into five chapters. The first chapter introduces a generali-

zed formulation of matrix approximation problems, which also covers matrix completion

problems and Procrustes problems. In this chapter, we provide three practical examples

that fit the structure of the matrix approximation problem and serve as motivation for

our research.

The second chapter presents a brief summary of the theoretical background of conic

linear programming and introduces transformations to deal with norm minimization and

quadratic constraints of the matrix approximation problem in a conic optimization frame-

18

work. These transformations lead to the formulation of semidefinite problems, which may

also include an additional rank constraint.

In the third chapter, we discuss several techniques to address the rank constraint in

otherwise convex problems. In addition, we provide an overview of existing algorithms,

discuss their drawbacks, and propose a bisection algorithm for solving convex problems

with an additional rank constraint.

The last two chapters focus on applications. The fourth chapter applies the pro-

posed conic optimization approach to low-rank matrix approximation problems, specif-

ically the problem of finding the nearest low-rank correlation matrix. We demonstrate

the performance of the newly designed bisection algorithm in solving the corresponding

rank-constrained semidefinite problems. Some of the numerical results described in this

chapter were presented at the Algoritmy 2020 conference held in Podbanské and published

in [44].

The fifth chapter discusses the constrained Procrustes problems that commonly occur

in numerous applications. We show how the introduced conic approach allows solving

various subclasses of Procrustes problems exclusively using conic optimization tools, in-

cluding some nontrivial subclasses. The results summarized in this chapter were presented

at the MMEI 2021 (Conference on Mathematic Methods in Economy and Industry) in

Smolenice [45] and at the ODS 2022 (Conference on Optimization and Decision Science)

in Florence [46]. These results have been submitted as an arXiv preprint [47].

19

1 Motivation

Matrix approximation problems are an attractive field of study with a wide range of

practical applications in various disciplines, such as data science, engineering, signal pro-

cessing, machine learning, or finance. In these fields, data is often represented as matrices

that may not possess desired properties or may have missing entries. As a result, it be-

comes necessary to approximate a given matrix with another matrix that satisfies specific

constraints or estimate the missing entries to achieve a resulting matrix that is as close

as possible to the original matrix in terms of a matrix norm.

In this thesis, we study a generalized formulation of matrix approximation problems

of the form
min

X∈Rm×n
f(X) := ∥W ◦ (C − AXB)∥

X ∈ P ,
(1)

where A ∈ Rp×m, B ∈ Rn×q, W, C ∈ Rp×q are the data and X ∈ Rm×n is the matrix

variable. Here ◦ denotes the Hadamard (element-wise) product (see Appendix A.2), and

the matrix W specifies the target, that is,

Wij =


1, if Cij is given,

0, if Cij is missing.
(2)

Clearly, if all elements of W are equal to 1, then the objective of (1) can be written as

∥C − AXB∥.

In general, the formulation of the problem (1) corresponds to a matrix approximation

problem, where the matrix variable X is assumed to belong to a feasible set P . To specify

the feasible set P , we will assume the following throughout the thesis:

Assumption 1.1. The feasible set P in (1) is described by linear, semidefinite, quadratic,

or rank constraints.

Even though the assumption might seem restrictive, it covers the well-known classes of

Procrustes problems, such as orthogonal and oblique Procrustes problems, but allows for

many different classes of matrix approximation problems widely studied in the literature.

In many research papers, the Frobenius norm is commonly used in the objective of (1)

to compare matrices and measure their similarity. However, some authors also consider

20

other matrix norms, such as the l1 norm and the l∞ norm, which are less sensitive to

outliers and are considered more robust alternatives to least squares. Additionally, our

generalized formulation (1) also encompasses the spectral norm, which provides a way to

quantify the similarity of the matrices in terms of their eigenvalues. Despite its usefulness

in applications, the spectral norm can be challenging to handle using standard approaches.

In the following examples, we present formulations of several practical problems that

may serve as a motivation for our research.

Example 1.1. Approximating correlation matrix in finance. Correlation matri-

ces are frequently used in finance for tasks such as portfolio optimization, risk manage-

ment, and data analysis. However, in these fields, data are rarely available for all observed

time points, such as prices of stocks traded on different exchanges. For example, consider

a data set presented in Table 1, which includes the prices of eight stocks observed at ten

points in time, where NaNs represent missing values.

In this scenario, an empirical correlation matrix is computed for each element sepa-

rately to minimize the number of neglected observations. As a result, we obtain the

following empirical correlation matrix

C =



1 −0.323 0.146 0.553 −0.252 0.201 −0.033 −0.241

−0.323 1 0.260 0.140 0.573 0.015 0.269 0.282

0.146 0.260 1 −0.060 0.788 0.774 −0.718 0.910

0.553 0.140 −0.060 1 −0.006 0.074 0.499 −0.230

−0.252 0.573 0.788 −0.006 1 0.890 −0.220 0.881

0.201 0.015 0.774 0.074 0.890 1 −0.193 0.822

−0.034 0.269 −0.718 0.499 −0.220 −0.193 1 −0.537

−0.241 0.282 0.910 −0.230 0.881 0.822 −0.537 1


.

Before continuing, we present the definition of the correlation matrix.

Definition 1.1. A correlation matrix is a positive semidefinite matrix with a unit diago-

nal, whose element (i, j) denotes the correlation between variables xi and xj.

After inspecting the eigenvalues of C (-0.13, -0.04, 0.05, 0.23, 0.63, 1.63, 1.74, 3.89), it

becomes apparent that the empirical correlation matrix is not semidefinite. As a result, it

does not meet the criteria for a correlation matrix, as defined in Definition 1.1. Instead, it

only serves as an approximation of the actual correlation matrix. Therefore, the problem

of finding the nearest correlation matrix must be addressed, as suggested in [60, 7]. The

task is to find a correlation matrix X ∈ Sn that satisfies Definition 1.1 and serves as the

21

59.875 42.734 47.938 60.359 NaN 69.625 61.500 62.125

53.188 49.000 39.500 64.813 34.750 56.625 83.000 44.500

55.750 50.000 38.938 62.875 30.188 43.375 NaN 29.938

65.500 51.063 45.563 69.313 48.250 62.375 85.250 46.875

69.938 47.000 52.313 71.016 37.500 59.359 61.188 48.219

61.500 44.188 NaN 57.000 35.313 55.813 51.500 62.188

59.230 48.210 62.190 61.390 54.310 70.170 61.750 91.080

NaN 48.700 60.300 68.580 61.250 70.340 61.590 90.350

52.900 52.690 54.230 61.670 68.170 NaN 57.870 88.640

57.370 59.040 59.870 62.090 61.620 66.470 65.370 85.840

Table 1: Stock prices with missing values1.

best approximation of the empirical correlation matrix C in terms of the Frobenius norm.

This problem can be formulated as follows

min
X∈Sn

∥C − X∥F

Xii = 1, i = 1, ..., n,

X ⪰ 0.

(3)

This concept can also be extended to address the problem of completing the empirical

correlation matrix C by incorporating the matrix W ∈ Rn×n, as defined in (2), into the

objective of (3). This means that the objective would be in the form of ∥W ◦ (C − X)∥F ,

where W ensures that the known entries of C do not change significantly in the approx-

imation X. The Frobenius norm is the most suitable for comparing specific elements of

the matrix C − X that represent differences in specific correlations.

A more interesting problem arises in financial factor models, where the rank of the

correlation matrix should not exceed the number of factors. For example, if we handle

a model with k factors, the rank should be at most k (see [57, 106]). Given a real symmetric

matrix C of order n, the problem of finding the nearest correlation matrix with the desired

rank k ∈ N+ can be formulated as a rank-constrained optimization problem of the form

min
X∈Sn

∥C − X∥F

Xii = 1, i = 1, ..., n,

X ⪰ 0,

rank(X) ≤ k.

(4)

1Data available at https://www.mathworks.com/help/stats/nearcorr.html.

22

https://www.mathworks.com/help/stats/nearcorr.html

While (3) is a convex problem that can be easily solved by available solvers, the

additional rank constraint in (4) leads to a nonconvex formulation, which requires special

solution algorithms. We analyze the problem of finding the nearest low-rank correlation

matrix in more detail in Chapter 4.

Example 1.2. Orthogonal transformation of an ancient map. Following [25, 53],

the objective of this analysis is to assess the precision of John Speed’s ancient map (see

Figure 1) compared to a modern map from the Landranger series of Ordnance Survey

Maps. Both maps show the locations of 20 towns and villages in the Worcestershire

region. The locations were measured relative to the lower left corner of the maps, as

provided in the data source2. The locations are visually compared in Figure 2.

Figure 1: John Speed’s historical map of the Worcestershire region in England. It

was engraved and printed in 1611-16123.

Based on the observations from Figure 2, it is evident that the data points are shifted

and slightly rotated. Aware of this, we can formulate the corresponding Procrustes prob-

lem as follows
min
X,d,ρ

f(X, d, ρ) := ∥C − (12d
T + ρAX)∥F

XXT = I2,
(5)

where X ∈ R2×2 is a matrix variable representing an orthogonal transformation of the

data, d ∈ R2 is a vector variable representing data translation, ρ ∈ R is a variable

representing the scaling factor, C ∈ R20×2 denotes locations from the modern map and

A ∈ R20×2 locations from the ancient map.
2Data available at https://www.stata.com/manuals14/mvprocrustes.pdf.
3Picture downloaded from http://www.oldtowns.co.uk/.

23

https://www.stata.com/manuals14/mvprocrustes.pdf
http://www.oldtowns.co.uk/

700 750 800 850 900 950 1000 1050 1100
300

350

400

450

500

550

600

650

700

750

800

Alve

Arro

Astl

Beck

Beng

Crad

Droi

Ecki
Eves

Hall

Hanb

Inkb

Kemp

Kidd

Mart

Stud

Tewk

UpSn

Upto

Worc

60 80 100 120 140 160 180 200 220
40

60

80

100

120

140

160

180

200

220 Alve

Arro

Astl

Beck

Beng
Crad

Droi

Ecki

Eves

Hall

Hanb

Inkb

Kemp

Kidd

Mart

Stud

Tewk

UpSn

Upto

Worc

Figure 2: Locations. On the left: Locations from the ancient map. On the right: Locations

from the modern map.

As shown in [53], the problem (5) can be solved in 3 steps:

1. find the orthogonal transformation X∗ by solving an orthogonal Procrustes problem

of the form
min

X∈R2×2
∥C − AX∥F

XXT = I2,
(6)

2. find the scaling factor ρ∗(X∗) = argmin
ρ∈R

f(X∗, d∗(X∗, ρ), ρ),

3. find the translation vector d∗(X∗, ρ∗) = argmin
d∈R2

f(X∗, d, ρ).

Optimality conditions can be used to derive explicit formulas for the optimal values

of ρ∗ and d∗. For fixed X and ρ, one obtains the following:

ρ∗ = tr[JC(AX)T]
tr[JAX(AX)T] , (7)

d∗ = 1
p

(C − ρAX)T 1, (8)

where J = I20 − 1
2011T . As a result, the value of the objective function can be used to

quantify the error of the ancient map.

As we discuss in later sections, the orthogonal Procrustes problem of the form (6) is

easily solvable. However, slight modifications to the assumptions for the matrix variable

can lead to more challenging problems, which we analyze in Chapter 5.

Example 1.3. Orthogonal least squares regression for feature extraction. Or-

thogonal least squares regression is a regression technique used in linear discriminant

24

Figure 3: Examples of images from the Yale data set4.

analysis that involves finding an orthogonal transformation matrix X ∈ Rm×n to project

high-dimensional data (with dimension m) into a lower-dimensional space (with dimen-

sion n << m). It is used in machine learning and data analysis to identify a subset of

features that are most informative for predicting the target variable while ensuring that

the selected features are orthogonal to each other. According to [107], an orthogonal

transformation matrix can preserve more information about the local structure, making

the orthogonal least squares regression a useful tool in various applications such as feature

selection, dimensionality reduction, and pattern recognition.

Orthogonal least squares regression is formulated as an orthogonal Procrustes problem

of the form ([104])
min

X∈Rm×n
∥C − AX∥F

XT X = In,
(9)

where C ∈ Rp×n and A ∈ Rp×m represent the given data.

Consider the Yale data set, consisting of 165 gray-scale images of 15 individuals, with

each individual having 11 images, representing different facial expressions or configura-

tions. Figure 3 shows several samples of this data set. The task is to identify the most

important facial features that predict the identity of the individual, such as the positions

of certain landmarks on the face or the intensities of certain regions. To achieve this, the

orthogonal least squares regression can be used to extract the most informative features

that are correlated with the identity labels of individuals.

To perform feature extraction, we follow the approach described in [104]. Consider

a data set S = [s1, ..., sp] ∈ Rm×p, which contains p samples with m features drawn
4Data sourced from https://www.kaggle.com/datasets/olgabelitskaya/yale-face-database.

25

https://www.kaggle.com/datasets/olgabelitskaya/yale-face-database

from n classes. In the Yale data set, we have p = 165 images (samples) with m = 256

features corresponding to n = 15 individuals. Let K = [k1, ..., kp] ∈ Rn×p be the class

indicator matrix. This means that if the image si belongs to the j-th individual, then

ki = ej, where ej ∈ Rn is the j-th column of the standard basis. The model includes

an orthogonal transformation matrix X ∈ Rm×n and an associated bias b ∈ Rn. Both X

and b are determined using orthogonal least squares regression, which is formulated as an

orthogonal Procrustes problem of the form ([104])

min
X∈Rm×n,b∈Rn

h(X, b) := ∥ST X + 1pbT − KT ∥F

XT X = In,
(10)

where S ∈ Rm×p and K ∈ Rn×p are the given data described above.

Using the partial derivative of h(X, b) with respect to b, we can express b as b =
1
p
(K1p − XT S1p). Consequently, the formulation (10) is simplified to the orthogonal

Procrustes problem of the form (9), where A = (Ip − 1
p
1p1T

p)ST and C = (Ip − 1
p
1p1T

p)KT .

Once the orthogonal Procrustes problem (9) has been solved and the most informative

features have been selected, they can be used in various machine learning applications,

such as classification, clustering, or dimensionality reduction. It is important to note

that the orthogonal least squares regression (9) handles a rectangular orthogonal matrix

variable X ∈ Rm×n, which makes it more challenging to solve compared to the orthogonal

Procrustes problem (6) from Example 1.2, as we analyze in Chapter 5.

26

2 Conic optimization tools for norm minimization

and quadratically constrained problems

In this chapter, we provide an overview of fundamental aspects of conic optimization,

drawing from publications such as [19, 66, 8, 11, 100]. We then focus on norm minimiza-

tion and quadratically constrained problems and propose transformations to suit a conic

structure. Subsequently, we apply these results to solve a generalized matrix approxima-

tion problem (1) exclusively using conic optimization tools. For the sake of simplicity, we

assume that P in (1) does not include rank constraints, which are analyzed separately in

Chapter 3.

2.1 Convex optimization and conic linear programming

Convex optimization is a fundamental field of applied mathematics that deals with opti-

mizing convex functions over convex sets. Convexity is a crucial property for developing

computationally efficient algorithms such as interior point methods (see [4, 78, 64]), mak-

ing it valuable to formulate real-life problems as convex. As a result, convex optimization

has become an essential tool for researchers, practitioners, and decision-makers across

a wide range of fields, such as control theory, combinatorial optimization, engineering,

computer science, statistics, finance, and more.

Conic linear programming is a general framework for modeling all convex optimiza-

tion problems. Besides standard convex problems, it covers even specific classes of convex

problems that cannot be formulated in a traditional way (e.g. the class of semidefinite or

copositive programs). The conic structure has significantly influenced the development of

interior point methods, which are now implemented in various optimization software pack-

ages, such as Mosek [8], Gurobi [58], Sedumi [89], SDPT3 [95], CVXOPT [5], CVXR [43],

CPLEX [26] and others. In our research, we used the SDPT3 solver implemented in

CVX, a package for specifying and solving convex programs [56, 55]. It is worth men-

tioning that the efficiency of a method is typically measured by the running time of the

code with the implemented method, which reflects the number of elementary operations

performed during the optimization process.

27

In the realm of convex optimization, convex cones play an essential role. In this

context, we will define convex cones in the vector space Rn. Additionally, we present the

standard formulation of a linear conic programming problem and discuss four fundamental

types of convex cones.

Definition 2.1 ([19, §2.1.5]). A set K is called a convex cone if for any x1, x2 ∈ K ⊆ Rn

and α, β ≥ 0 we have αx1 + βx2 ∈ K.

Given a closed convex cone K, the conic linear programming problem is standardly

([19, §2.1.5],[8, §1]) formulated as follows

min
x∈Rn

cT x

Ax = b,

x ∈ K,

(11)

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm.

Note that the nonnegative orthant Rn
+ = {x ∈ Rn | x ≥ 0} is also a convex cone.

Therefore, linear programming (LP), as the historically oldest and structurally simplest

class of optimization problems, is a specific subclass of conic optimization. Since conic

problems maintain the linear objective and linear constraints, they are similar to LP

problems up to the fact that the variable can belong to a convex cone other than the

nonnegative orthant Rn
+. In this sense, a conic problem can be perceived as a generaliza-

tion of linear optimization. However, unlike LP problems, a general conic linear program

(11) can also handle nonlinear constraints through the associated convex cone K. This

allows it to capture a wide range of applications that cannot be treated with LP, making

it a versatile tool for optimization in various fields.

According to [8], there are four basic types of convex cones that allow the formula-

tion of various types of nonlinear constraints and suffice to express most of the convex

optimization problems encountered in practical applications:

• quadratic cone

Qn = {x ∈ Rn | x1 ≥
√

x2
2 + x2

3 + ... + x2
n},

• power cone

Pα,1−α
n = {x ∈ Rn | xα

1 x1−α
2 ≥

√
x2

3 + ... + x2
n, x1, x2 ≥ 0}, where 0 < α < 1,

28

• exponential cone

Kexp = {(x1, x2, x3) | x1 ≥ x2e
x3
x2 , x2 > 0} ∪ {(x1, 0, x3) | x1 ≥ 0, x3 ≤ 0},

• semidefinite cone

Sn
+ = {X ∈ Sn | zT Xz ≥ 0, ∀z ∈ Rn}.

The class of quadratic cone programming, known as second-order cone programming

(SOCP), covers a large scale of problems involving absolute values, the Euclidean norm,

convex quadratic sets, ellipsoidal sets, and more (see [3], [70], [8, §3]). Power cones are

a generalization of quadratic cones and provide a convenient way to handle constraints

involving powers other than two. They can be used to express various types of constraints,

such as p norms and geometric mean (see [8, §4]). The exponential cone is useful for

dealing with constraints involving exponentials and logarithms, which commonly arise in

portfolio optimization, entropy problems, logistic regression, or geometric programming

(see [8, §5]). In the thesis, we pay special attention to the semidefinite cone Sn
+, which we

characterize in a dedicated subsection below.

2.1.1 Semidefinite programming

Semidefinite programming (SDP) deals with conic linear programs (11), where K is the

cone of positive semidefinite matrices Sn
+ in the subspace of symmetric matrices Sn. This

means that SDP problems minimize a linear objective over the intersection of the linear

space and Sn
+. A standard SDP problem is formulated in the form ([19, §4.6], [27, §4.1.1])

min
X∈Sn

tr(CX)

tr(AiX) = bi, i = 1, ..., m,

X ⪰ 0,

(12)

where C, A1, ..., Am ∈ Sn and b ∈ Rm. Note that tr(CX) represents the vector inner

product for matrices, that is

tr(CX) = ⟨C, X⟩ = svec(C)T svec(X), (13)

where svec(Y) denotes symmetric vectorization of Y ∈ Sn defined as

svec(Y) =
(

Y11
√

2Y12 Y22
√

2Y13
√

2Y23 Y33 . . . Ynn

)T

∈ R
n(n+1)

2 . (14)

29

Another common form of the SDP problem is its dual formulation that covers constraints

formulated as linear matrix inequalities (LMIs). It is formulated as follows

max
y∈Rm

bT y
m∑

i=1
yiAi ⪯ C.

(15)

SDP remains relevant due to its ability to model or approximate a wide range of practical

problems, including control theory, combinatorial optimization, spectral analysis, statisti-

cal experimental design, machine learning, and finance. Furthermore, SDP allows for the

effective handling of eigenvalues, which is of significant importance (see Appendix B.2).

There are various classes of optimization problems that can be represented as SDP

programs through specific transformations. It is known that convex quadratic constraints

can be directly reformulated as semidefinite constraints, while nonconvex quadratic con-

straints can be relaxed by semidefinite constraints. In the thesis, we encounter the need

to handle the norm in the objective of the generalized matrix approximation problem (1),

as well as different types of constraints allowed to define the feasibility set P of (1). To

address this, we present the relevant transformations in the following subsections.

2.2 Quadratically constrained problems

In this section, our aim is to introduce a conic optimization approach to solve the ge-

neralized matrix approximation problem (1). First, we want to deal with all types of

constraints allowed to define the feasibility set P .

For the sake of simplicity, let us neglect the objective and consider the feasibility

problem of the form
find X ∈ Rm×n

X ∈ P .
(16)

If the feasible set P consists only of linear or semidefinite constraints, problem (16) is

an LP or SDP problem, which can be efficiently solved, as discussed above. In addition

to linear and semidefinite constraints, we also assume quadratic constraints and rank

constraints that define P .

In this section, we investigate the quadratic constraints. As known from the convex

analysis [19], the convex quadratic constraints can be represented as semidefinite con-

straints after using the Schur complement lemma. We provide its statement below.

30

Lemma 2.1 ([103, §6.3]). Let

M =

 A B

BT C


be a symmetric matrix with the k × k block A and the l × l block C.

If A is positive definite, then M is positive (semi)definite if and only if the matrix

C − BT A−1B (called the Schur complement of A in M) is positive (semi)definite.

If C is positive definite, then M is positive (semi)definite if and only if the matrix

A − BC−1BT (called the Schur complement of C in M) is positive (semi)definite.

Now, if we take, for example, a convex quadratic constraint of the form XT X ⪯ G,

using Lemma 2.1, it can be rewritten as

V =

 Im X

XT G

 ⪰ 0, (17)

because the matrix G − XT X is the Schur complement of the identity matrix in V .

A more complicated situation occurs when dealing with nonconvex quadratic con-

straints. In such cases, the rank of a matrix variable must also be taken into account.

The following lemma provides a brief reminder of how the rank of the block matrix (17)

is determined.

Lemma 2.2 ([27, §A.4]). Let A and C be symmetric matrices, while A is invertible. Then

the rank of the block matrix E can be determined as follows

rank


 A B

BT C


 = rank


A 0

0T C − BT A−1B


 = rank (A) + rank

(
C − BT A−1B

)
.

(18)

The following proposition states an important property of positive semidefinite matri-

ces. A similar statement can be found in [91]. We will provide proof of this proposition

based on Lemma 2.1 and Lemma 2.2.

Proposition 2.1. Let G ∈ Sn and X ∈ Rm×n. Then

G = XT X ⇔

G ⪰ XT X ∧ rank


 Im X

XT G


 = m

. (19)

31

Proof. (⇒): If G = XT X, then G ⪰ XT X and rank(G − XT X) = 0. Therefore, due to

Lemma 2.2 we have

rank


 Im X

XT G


 = m.

(⇐): If we assume that G − XT X ⪰ 0, we can use Lemma 2.1 to equivalently rewrite

this matrix inequality as

Z =

 Im X

XT G

 ⪰ 0. (20)

The rank of the block matrix Z is calculated according to Lemma 2.2 as follows

rank


 Im X

XT G


 = rank


Im 0

0T G − XT X


 = rank (Im) + rank

(
G − XT X

)

= m + rank
(
G − XT X

)
.

As the rank of the block matrix Z is m, the rank of the matrix G − XT X must be 0,

implying that G − XT X = 0. Thus, G = XT X.

The statement of Proposition 2.1 offers a representation of a nonconvex quadratic

constraint in the form G = XT X. Moreover, this representation can be extended to

derive representations of other types of nonconvex quadratic constraints. Table 2 provides

a summary of various types of quadratic constraints, along with their representations

using linear, semidefinite, and rank constraints. These representations are derived from

established matrix analysis results [19, 27], and can be obtained using statements of

Lemma 2.1 and Proposition 2.1, as we present in Appendix B.4.

2.3 Norm minimization problems

In this section, we handle a more general formulation of norm minimization problems of

the form
min

X∈Rm×n
f(X) := ∥L(X)∥

s.t. X ∈ P ,
(21)

where L : Rm×n → Rp×q is a linear map and P is the feasible set satisfying Assumption

1.1. The generalized matrix approximation problem (1) fits this structure with L(X) :=

W ◦ (C − AXB).

32

Constraint Representation Variables

XT X ⪯ G V =

 Im X

XT G

 ⪰ 0 X, V

XT X = G V =

 Im X

XT G

 ⪰ 0 rank(V) = m X, V

XT X ⪰ G V =

 Im X

XT Y

 ⪰ 0 rank(V) = m, Y − G ⪰ 0 X, V, Y

tr(XT X) ≤ g V =

 Im X

XT G

 ⪰ 0 tr(G) ≤ g X, V, G

tr(XT X) = g V =

 Im X

XT G

 ⪰ 0 tr(G) = g, rank(V) = m X, V, G

tr(XT X) ≥ g V =

 Im X

XT G

 ⪰ 0 tr(G) ≥ g, rank(V) = m X, V, G

diag(XT X) ≤ h V =

 Im X

XT G

 ⪰ 0 diag(G) ≤ h, rank(V) = m X, V, G

diag(XT X) = h V =

 Im X

XT G

 ⪰ 0 diag(G) = h, rank(V) = m X, V, G

diag(XT X) ≥ h V =

 Im X

XT G

 ⪰ 0 diag(G) ≥ h, rank(V) = m X, V, G

Table 2: Quadratic constraints representation via semidefinite, linear, and rank

constraints. Quadratic constraints are given by m×n matrix X, n×n matrix G, n-dimensional

vector h and scalar g.

33

matrix norm notation definition

l1 norm ∥Y ∥1 max
1≤j≤n

∑m
i=1 |Yij|

l∞ norm ∥Y ∥∞ max
1≤i≤m

∑n
j=1 |Yij|

l2 /spectral norm ∥Y ∥2 σmax(Y) =
√

λmax(Y T Y)

Frobenius norm ∥Y ∥F

√
tr(Y Y T) =

√∑m
i=1

∑n
j=1 Y 2

ij

Table 3: Matrix norms definitions. Matrix norm definitions of Y ∈ Rm×n, where σmax and

λmax denote the largest singular value and the largest eigenvalue, respectively.

Our aim is to reformulate the objective of (21) to align with a conic structure. In

the objective, we consider these four matrix norms: l1 norm, l2 norm, l∞ norm, and

Frobenius norm. For each of these matrix norms, we derive a conic reformulation of the

problem (21). To handle the l1, l2, and l∞ norms, we employ standard transformation

techniques as described in [19]. Additionally, we propose a novel approach for handling

the Frobenius norm. The definitions of these matrix norms are summarized in Table 3.

As mentioned in Chapter 1, different matrix norms serve specific purposes and find ap-

plications in various scenarios. For instance, the l1 norm is used to measure the "sparsity"

of a matrix, penalizing large entries in any column. On the other hand, the l∞ norm is

useful for measuring the maximum absolute error. The l2 norm, also known as a spectral

norm, is frequently used to measure the "scale" of a matrix, as it is closely related to the

eigenvalues of Y T Y . Meanwhile, the Frobenius norm is the most commonly used norm

in real-world matrix approximation problems, as it measures the element-wise distance

between two matrices.

In the following propositions, we summarize equivalent reformulations of the general

norm minimization problem (21) with respect to particular norms. Detailed transfor-

mations for these problems can be found in Appendix B.3. It is worth noting that two

optimization problems are considered equivalent if an optimal solution of one problem

can be used to construct an optimal solution of the other problem.

34

Proposition 2.2. The problem

min
X∈Rm×n

f(X) := ∥L(X)∥1

X ∈ P
(22)

is equivalent to the problem

min
X∈Rm×n,t∈R,S∈Rp×q

t

X ∈ P ,

−S ≤ L(X) ≤ S,

ST 1p ≤ t1q.

(23)

Proof. If X̂ is optimal for (22), and we define Ŝ ∈ Rp×q such that Ŝij := |L(X̂)ij| and

t̂ = max
j

∑p
i=1 Ŝij, then (X̂, Ŝ, t̂) is feasible for (23) and t̂ = f(X̂). Reversely, if (X∗, S∗, t∗)

is optimal for (23), then X∗ is feasible for (22). From the last constraint, we have t∗ ≥

max
j

∑p
i=1 S∗

ij, and from the second constraint we have S∗
ij ≥ |L(X∗)ij|. Consequently,

using the l1 norm definition from Table 3, we have the following

t∗ ≥ max
j

p∑
i=1

S∗
ij = ∥S∗∥1 ≥ ∥L(X∗)∥1 = f(X∗).

To sum up, we have

f(X∗) ≤ t∗ ≤ t̂ = f(X̂) ≤ f(X∗),

where the first inequality follows from the feasibility of t∗ in (23), the second inequal-

ity follows from the optimality of t∗ for (23), and the last inequality follows from the

optimality of X̂ for (22). Therefore, f(X∗) = f(X̂) = t̂ = t∗.

In summary, if the l1 norm is present in the objective of the generalized matrix ap-

proximation problem (1), it can be replaced with a linear objective and linear constraints,

resulting in an equivalent LP problem, assuming that only linear functions define P .

Proposition 2.3. The problem

min
X∈Rm×n

f(X) := ∥L(X)∥∞

X ∈ P
(24)

35

is equivalent to the following problem

min
X∈Rm×n,t∈R,S∈Rp×q

t

X ∈ P ,

−S ≤ L(X) ≤ S,

S1q ≤ t1p.

(25)

Proof. The proof is analogous to the proof of Proposition 2.2.

Similarly to the l1 norm, if the l∞ norm is present in the objective of the generalized

matrix approximation problem (1), it can be replaced with a linear objective and linear

constraints. Assuming that the feasibility set P is polyhedral, the problem (24) becomes

an LP problem. More interesting cases arise when dealing with the spectral norm or the

Frobenius norm in the objective. In the following subsections, we show that in such cases,

the generalized matrix approximation problem (1) is equivalent to a problem with a linear

objective and an additional SDP constraint.

Proposition 2.4. The problem

min
X∈Rm×n

f(X) := ∥L(X)∥2

X ∈ P .
(26)

is equivalent to the problem

min
X∈Rm×n,s∈R

s

X ∈ P sIp L(X)

L(X)T sIq

 ⪰ 0.

(27)

.

Proof. Let X̂ be optimal for (26) and define ŝ := ∥L(X̂)∥2. From the definition of the

spectral norm (see Table 3), we obtain

(ŝ)2 = λmax

(
L(X̂)L(X̂)T

)
,

which implies

(ŝ)2Iq − L(X̂)T L(X̂) ⪰ 0

36

and due to the Schur complement property from Lemma 2.1, such (X̂, ŝ) satisfies the last

constraint of (27). Therefore, it follows that (X̂, ŝ) is feasible for (27) and ŝ = f(X̂). On

the reverse side, if (X∗, s∗) is optimal for (27), then X∗ is feasible for (26). From the last

constraint of (27) and the definition of the spectral norm, we have

s∗ ≥ σmax

(
L(X∗)

)
= ∥L(X∗)∥2 = f(X∗).

In conclusion, it holds

f(X∗) ≤ s∗ ≤ ŝ = f(X̂) ≤ f(X∗),

where the first inequality follows from the last constraint in (27), the second inequality fol-

lows from the optimality of s∗ for (27), and the last inequality follows from the optimality

of X̂ for (26). Therefore, f(X∗) = f(X̂) = ŝ = s∗.

Proposition 2.5. The problem

min
X∈Rm×n

f(X) := ∥L(X)∥2
F

X ∈ P .
(28)

is equivalent to the problem

min
X∈Rm×n,Z∈Sp

tr(Z)

X ∈ P Iq L(X)T

L(X) Z

 ⪰ 0.

(29)

Proof. Let X̂ be optimal for (28), and define Ẑ := L(X̂)L(X̂)T . Using the Schur

complement property from Lemma 2.1, the last constraint of (29) can be rewritten as

Z ⪰ L(X)L(X)T . Therefore, (X̂, Ẑ) is feasible for (29) and tr(Ẑ) = f(X̂). Reversely,

if (X∗, Z∗) is optimal for (29), then X∗ is feasible for (28). Due to the property of

semidefinite matrices (see Lemma A.2), from the last constraint of (29) we have

tr(Z∗) ≥ tr
(
L(X∗)L(X∗)T

)
= ∥L(X∗)∥2

F = f(X∗).

Consequently, it holds

f(X∗) ≤ tr(Z∗) ≤ tr(Ẑ) = f(X̂) ≤ f(X∗),

where the first inequality follows from the last constraint in (29), the second inequal-

ity follows from the optimality of Z∗ for (29), and the last inequality follows from the

optimality of X̂ for (28). Therefore, we have f(X∗) = f(X̂) = tr(Ẑ) = tr(Z∗).

37

2.4 Summary

In the previous subsections, we have outlined how to address various types of objectives

and constraints in the generalized matrix approximation problem (1). In Section 2.3,

we discussed how transformations of the objective can result in a linear objective with

an additional linear or semidefinite constraint. Moreover, in Section 2.2, we presented

transformations for quadratic constraints that allow us to express the feasibility set P in

terms of linear, semidefinite, and rank constraints.

In summary, we are equipped to handle either SDP problems or rank-constrained SDP

problems, regardless of the types of objectives and constraints in (1). In the case of SDP

problems, we can find their solution effectively. On the other hand, rank-constrained SDP

problems remain nonconvex. However, their SDP structure is beneficial for constructing

several solution methods to handle the nonconvex rank constraint. This topic is further

analyzed in Chapter 3.

38

3 Rank-constrained optimization problems

The requirement to impose a rank constraint on a matrix variable arises in various areas,

such as control, statistics, finance, engineering, or combinatorial optimization. For in-

stance, a rank constraint can limit the number of parameters in a statistical model to fit

a random process or ensure that a shape embeds in a low-dimensional space. In addition,

it may emerge as a result of a transformation, as demonstrated in Proposition 2.1 when

handling nonconvex quadratic constraints.

In this chapter, we delve into the realm of rank-constrained optimization problems, as

defined in [91], where the goal is to optimize a convex objective function subject to a set

of convex constraints along with rank constraints imposed on the matrix variable. The

problem can be formulated as follows

min
X∈Sn

+
g(X) := tr(CX)

X ∈ C,

rank(X) ≤ k,

(30)

where C ∈ Sn, C is a convex set, and k ∈ N+ is a desired rank of the matrix variable

X ∈ Sn
+. It is worth noting that when C is an affine set, the problem (30) corresponds to

the rank-constrained SDP problem. Although transformations of the matrix approxima-

tion problem (1) introduced in Chapter 2 may lead specifically to the rank-constrained

SDP reformulation, this chapter focuses on addressing a more general rank-constrained

optimization problem (30), in order to present known results that are relevant to rank-

constrained optimization problems in general.

As apparent from the structure, the rank constraint is the only source of nonconvexity

in "otherwise convex" problem (30). Although the rank-constrained optimization prob-

lem (30) is NP-hard ([36, 91]), several algorithms designed for finding a feasible solution

of the rank-constrained optimization problem (30) have been adjusted to find also an

approximation of an optimal solution of the rank-constrained optimization problem (30).

We discuss these methods in more detail in Section 3.3.1 and Section 3.3.2. In addition,

there are several local search algorithms, as mentioned in [91, 9]. Efforts have also been

made to develop exact algorithms for solving the rank-constrained optimization prob-

lem (30). However, in this thesis, we focus on heuristics and rank reduction algorithms

39

due to limitations of exact algorithms, such as their applicability only in small dimen-

sions (e.g., [77]) or their recent development (e.g., [13]). Nonetheless, the strong interest

in developing a framework for modeling and solving rank-constrained optimization prob-

lems highlights the advantages of reformulating real-life problems as rank-constrained

optimization problems.

The proposal of solution methods was conditioned by some beneficial properties of the

rank as a function of the symmetric positive semidefinite matrix variable. It is known

([27, §2.9.2.9]) that the rank is a quasiconcave function on the set of symmetric positive

semidefinite matrices, which follows from the fact that

rank(X + Y) ≥ min{rank(X), rank(Y)}, for X, Y ∈ Sn
+. (31)

Furthermore, the diagonalizability of symmetric matrices enables the investigation of the

relationship between their rank and eigenvalues. The following lemma summarizes two

essential results known from matrix theory [19, 27, 103].

Lemma 3.1. Let X ∈ Sn
+, k ≤ n and λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 be eigenvalues of X. Then

it holds

λ1 + λ2 + ... + λk = tr(X) ⇔ rank(X) ≤ k, (32)

and

λk+1 + λk+2 + ... + λn = 0 ⇔ rank(X) ≤ k. (33)

It is known that the rank of a symmetric positive semidefinite matrix equals the

number of its nonzero eigenvalues. For purposes of numerical computation, we can define

an ε-rank of a symmetric positive semidefinite matrix, which considers eigenvalues with

magnitudes greater than ε as nonzero eigenvalues, where ε is a small positive value.

Definition 3.1. Given X ∈ Sn
+ with eigenvalues λ1 ≥ ... ≥ λn ≥ 0, and k ∈ N+, for

ε > 0 we define the ε-rank of X as the number of its eigenvalues greater than ε. That is

ε-rank(X) = k ⇔ λ1 > ε, ..., λk > ε, λk+1 ≤ ε, ..., λn ≤ ε.

In the following sections, we will discuss several methods for finding optimal or feasible

solutions of the rank-constrained optimization problem (30).

40

3.1 Convex relaxation

With an increasing number of problems having a nonconvex formulation, there is a growing

need to find effective ways to solve them. The simplest way to deal with a nonconvex

constraint is using a convex relaxation. Many relaxation methods have the common

feature that they approximate the original nonconvex problem by its (in some sense)

closest convex counterpart. Although the solution of the relaxed problem may not be

optimal for the original problem, it is often sufficient for practical purposes. Moreover, it

provides a better lower bound for the optimal value of the original problem, compared to

its dual ([19, §5.2]).

The convex relaxation of the rank-constrained optimization problem (30) consists in

omitting the rank constraint and solving a convex program of the form

min
X∈Sn

+
g(X) := tr(CX)

X ∈ C,
(34)

where C ∈ Sn and C is a convex set. In case C is affine, the problem (34) is called

a semidefinite relaxation of the rank-constrained optimization problem (30).

It is obvious that if a rank-k solution is found, it is an optimal solution of the original

rank-constrained optimization problem (30). However, as proved in [102], the contempo-

rary interior-point methods for solving convex problems converge to the solution of the

highest feasible rank. Therefore, it is not always guaranteed that a low-rank solution is

found, and other approaches must be considered.

A significant property of the convex relaxation (34) is that it provides a lower bound

on the objective of the rank-constrained optimization problem (30). This is due to the fact

that the convex relaxation minimizes the same objective function g but over a larger set

of feasible solutions, which supersedes the feasible set of the rank-constrained optimiza-

tion problem (30). Let X∗ be an optimal solution of the rank-constrained optimization

problem (30) with the optimal value g∗ := g(X∗) and let X0 be an optimal solution of the

convex relaxation (34) with the optimal value g0 := g(X0). Then it holds

g∗ ≥ g0. (35)

Convex relaxations, or semidefinite relaxations in particular, are commonly used in

control and combinatorial optimization [18, 79], and integer programming, mainly associ-

41

ated with partitioning, assignment, and ordering [84, 85]. The most well-known semidef-

inite relaxation of a rank-constrained problem was introduced for the famous MAX-CUT

problem [51].

3.2 Methods for solving rank-constrained feasibility problems

Consider the rank-constrained optimization problem (30) as a feasibility problem of the

form
find X ∈ Sn

+

X ∈ C,

rank(X) ≤ k,

(36)

where C is a convex set and k ∈ N+ is the desired rank.

If X∗ is an optimal solution of the rank-constrained optimization problem (30) with the

optimal value g∗ := g(X∗) and X̂ is a solution of the rank-constrained feasibility problem

(36), which is a feasible solution of the rank-constrained optimization problem (30) that

provides value ĝ := g(X̂). Then ĝ gives an upper bound on the optimal value g∗. It holds

g∗ ≤ ĝ. (37)

One of the possible approaches to solve the rank-constrained feasibility problems (36)

is to use the so-called rank minimization heuristics, which were introduced in [36, 37] and

were originally designed to tackle general rank minimization problems of the form

min
X∈Sn

+
rank(X)

X ∈ C.
(38)

Although originally assuming a matrix variable X ∈ Sn
+, the rank minimization prob-

lem (38) also encompasses problems with general X ∈ Rm×n. In [37], a theorem was

proposed that establishes every rank minimization problem with a general matrix vari-

able can be equivalently rewritten as a rank minimization problem with a symmetric

positive semidefinite variable (see Appendix D.1).

In the following, we outline four methods for solving the rank minimization problem

(38), which involves finding a feasible solution for the rank-constrained optimization prob-

lem (30). Firstly, we present two rank minimization heuristics that have been introduced

and enhanced in [36, 37, 39, 38]. Later, we describe two rank reduction algorithms from

[68, 27].

42

3.2.1 Trace heuristic

An essential tool for relaxing nonconvex problems is the concept of the convex envelope

of a function (Definition C.1), which serves as a good convex surrogate of a nonconvex

function ([37, §1]). The convex envelope of the rank function on the set

U1 = {X ∈ Sn
+ | 0 ⪯ X ⪯ I}

is the trace function, as stated in Theorem C.1. We provide an alternative proof of this

statement in Appendix C.2. Since the trace is the convex envelope of the rank function

on the set U1, it is its minorizing convex function, that provides the tightest global lower

bound on rank among all convex approximations. For further details on the convex

envelope, we refer to Appendix C.1.

The trace heuristic for the rank minimization problem (38) involves replacing the rank

function with the trace function in the objective, leading to a convex problem

min
X∈Sn

+
tr(X)

X ∈ C.
(39)

An alternative perspective on how the trace heuristic works is offered in [36]. The

trace function can be viewed as the sum of its eigenvalues λ1, ..., λn, denoted as λ(X) =

(λ1, ..., λn)T . Since the trace of a positive semidefinite matrix is equal to the sum of its

eigenvalues (as stated in Lemma 3.1), and since λi = |λi|, for ∀i = 1, ..., n, the trace can

be expressed as the l1 norm of the vector λ(X) as follows

tr(X) =
n∑

i=1
λi(X) =

n∑
i=1

|λi(X)| = ∥λ(X)∥1. (40)

Minimizing the trace function is then related to minimizing the l1 norm of the vector

λ(X). As a result, the trace heuristic (39) can be interpreted as l1 regularization, where

an optimal solution contains many zero elements. Additionally, since the zero elements

of λ(X) correspond to zero eigenvalues of X, it is expected that the optimal solution of

a problem with objective (40) is a low-rank matrix.

The trace heuristic (39) is a popular approach for solving the rank minimization prob-

lem (38) due to the linearity of the trace function in X, making it a convex program that

can be efficiently solved. It is known to work reliably in applications when solving the

43

rank minimization problem (38). However, it may find a solution with a higher rank than

the desired rank k, which cannot be considered a solution of the rank-constrained feasi-

bility problem (36). Furthermore, when minimizing the rank of a matrix with constant

diagonal elements or a constant sum of diagonal elements, the trace heuristic (39) is equiv-

alent to the convex relaxation (34). This highlights the need for more advanced iterative

algorithms to solve the rank-constrained feasibility problem (36) in such scenarios.

3.2.2 Log-det heuristic

In [38], the so-called log-det heuristic was proposed as a method to enhance the perfor-

mance of the trace heuristic. The main concept behind this heuristic is to approximate

the rank minimization problem (38) with the problem

min
X∈Sn

+
log det(X + δIn)

X ∈ C,

(41)

where the symbol log det denotes the logarithm of the determinant of the given matrix,

C is a convex set, and δ > 0 is a small regularization constant.

In Figure 4, we can observe how the rank function is approximated with the trace and

the log det function in a one-dimensional case. The plot displays the rank function, the

trace function, and the log det function for a scalar x ∈ R satisfying tr(x) = |x| and

rank(x) =


0, for x = 0,

1, otherwise.

(42)

Although the function log det(X + δIn) is concave (as stated in Lemma D.1), it can

still be considered as a suitable substitution for the rank function as it is smooth and

locally minimizable using this iterative method

Xt = argmin
X∈Sn

+

tr((Xt−1 + δIn)−1X)

X ∈ C,

(43)

where the function log det(X + δIn) is approximated by its first-order approximation.

More details can be found in Appendix D.3.

In [38], it has been shown that the sequence {log det(Xt + δIn)} converges to the local

minimum of the function log det(X + δIn). Notably, the problem (43) can be interpreted

as a weighted trace minimization, where the weights are given by Wt = (Xt + δIn)−1.

44

Figure 4: Illustration of the rank function approximation. The rank function is approx-

imated by the trace function, and the function log det for a scalar x ∈ R according to [38].

At the beginning of the iterative process, we initialize X0 = In, which ensures that the

first iteration aligns with the trace heuristic (39). Then, the subsequent iterations aim

to refine the solution obtained from the trace heuristic in order to achieve a lower-rank

solution. From this perspective, the log-det heuristic (43) can be seen as an enhancement

of the trace heuristic (39).

The iterative process (43) terminates when a rank-k solution is obtained. However,

for numerical computation, we adjusted the stopping criterion to utilize the ε-rank (as

defined in Definition 3.1), with a chosen value of ε. Additionally, in each iteration t,

we determine the ε-rank of the current solution Xt and check if the number of iterations

handling the constant-rank solutions does not exceed a chosen threshold M ∈ N+, in order

to prevent prolonged computation in case the algorithm fails to converge to a solution of

the desired ε-rank. The algorithm for the log-det heuristic is summarized in Algorithm 1,

which corresponds to the implemented algorithm addressing ε-rank.

To summarize, the log-det heuristic (Algorithm 1) is guaranteed to find an ε-rank-k

solution of the rank-constrained feasibility problem (36) for some ε > 0. If the ε-rank of

a solution Xt is equal to k with respect to the chosen value of ε, we have a feasible solution

X̂ for the rank-constrained optimization problem (30). However, it is possible that the

algorithm may not converge to a rank-k solution with respect to the chosen ε, resulting in

a higher ε-rank of the obtained solution Xt. In such cases, we can interpret the solution Xt

to have a τ -rank equal to k, where τ > ε. This can provide additional information retrieved

from the algorithm beyond its original version, which can be beneficial for assessing the

quality of a found solution and analyzing the performance of an algorithm.

45

Algorithm 1: The implemented algorithm of the log-det heuristic.

Initialize: X0 = In;

Set the desired rank: k ∈ N+;

Set tolerance: ε > 0;

Set regularization constant: δ > 0;

Set counter of iterations: t = 0;

Set counter of the "constant-rank" iterations: s = 0;

Set maximum number of the "constant-rank" iterations: M ∈ N+;

while ε-rank(Xt) > k and s < M do

1. set t = t + 1;

2. find Xt as a solution of (43);

3. if ε-rank(Xt) = ε-rank(Xt−1) set s = s + 1, otherwise s = 1;

end

Output: Xt;

3.2.3 Rank reduction algorithm

This section presents a rank reduction algorithm for solving the rank-constrained feasi-

bility problem (36). This algorithm, proposed in [68], is specifically designed for rank-

constrained SDP problems and assumes that C is an affine set, that is,

C = {X | tr(AiX) = bi, ∀i = 1, ..., m}, (44)

where A1, ..., Am ∈ Sn and b ∈ Rm are the given data.

As stated earlier, the solution of the semidefinite relaxation (34) is usually a high-rank

solution. Therefore, it is reasonable to use rank reduction algorithms to find a solution

of the rank-constrained SDP problem (30) when the semidefinite relaxation (34) fails to

yield a satisfactory solution. These algorithms aim to iteratively reduce the rank of the

initial solution in each iteration. However, the effectiveness of rank reduction is bounded

by a specific limit known as the Pataki-Barvinok upper bound on rank, as discussed in [27,

§2.9.3]. This upper bound provides an estimation of the maximum rank of a symmetric

positive semidefinite matrix, belonging to the feasibility set of the standard SDP problem

(12) (12). If this feasibility set (given by m linear equality constraints and a semidefinite

46

constraint) is non-empty, then there exists a feasible matrix X such that

rank(X)(rank(X) + 1)
2 ≤ m, (45)

whence the upper bound on rank is

rank(X) ≤ ⌊
√

8m + 1 − 1
2 ⌋. (46)

Equivalently we can say that the desired rank k is guaranteed when the number of con-

straints m satisfies
k(k + 1)

2 ≤ m. (47)

Although introduced in [68] to find a rank-k solution of the semidefinite relaxation (34),

let us first describe the rank reduction algorithm applied to solve the rank-constrained

feasibility problem (36) with an affine C (44), that is, a rank-constrained SDP feasibility

problem.

Given a solution X ∈ Sn
+ of the semidefinite relaxation (34) of the rank-constrained

SDP problem (30), the task is to find a solution X+ of the semidefinite relaxation (34)

such that

rank(X+) < rank(X), (48)

or equivalently, their nullspaces satisfy N (X+) ⊃ N (X). This rank reduction algorithm

guarantees to find a solution with a rank that is guaranteed by the upper bound on rank

(46).

It is known that for any X ∈ Sn
+, it holds that

rank(X) = r ⇔ X = V V T , where V ∈ Rn×r. (49)

The decomposition (49) can be obtained from the spectral decomposition of X as outlined

in Appendix A.3.

If we search for the matrix X+ in the form

X+ = V (Ir + α∆)V T , (50)

we can interpret (50) as a shift of the matrix X

X+ = X + αV ∆V T , (51)

47

where α ∈ R is the step size, and ∆ ∈ Sr is referred to as a direction matrix, as it defines

the direction of the shift ([68, §2.2]).

Our goal is to choose α ∈ R and ∆ ∈ Sr such that X+ is a solution of the semidefinite

relaxation (34) and satisfies (48). It is obvious that α cannot be zero in order to ensure

X+ ̸= X. In order to maintain feasibility, X+ needs to satisfy equality constraints of

C (44), which leads to the following conditions for ∆:

tr(V T AiV ∆) = 0, i = 1, ..., m, (52)

where Ai are the matrices defining the equality constraints of C. Furthermore, in order

for X+ to remain positive semidefinite, the following condition must be fulfilled:

Ir + α∆ ⪰ 0. (53)

To guarantee (48), the matrix Ir + α∆ has to be singular. To achieve this, we can

set α = − 1
λ1

, where λ1 is the maximum-magnitude eigenvalue of ∆. Consequently, the

shifted X+ defined by (50) will have at least one additional zero eigenvalue, resulting in

(48). The procedure is repeated until the desired ε-rank (see Definition 3.1) is obtained.

For numerical computation, we can add an additional stopping criterion that limits the

number of consecutive iterations providing a solution of the same rank, since the choice of

α guarantees that the rank of X decreases at each iteration, only up to the upper bound

on rank (46). The algorithm is summarized as Algorithm 2.

To summarize, Algorithm 2 finds a feasible rank-k solution of the rank-constrained

optimization problem (30) with respect to a chosen tolerance ε. When the desired rank k

satisfies (47), then the stopping criterion that limits the number of consecutive iterations

handling a solution of the unchanged ε-rank is unnecessary and the algorithm converges

as proved in [68].

As mentioned in the introduction to this algorithm, it was originally designed to solve

the rank-constrained SDP problem (30). The idea is to search for a rank-k solution among

optimal solutions of the semidefinite relaxation (34). However, it operates under a strong

assumption, which is summarized as Assumption 3.1.

48

Algorithm 2: The rank reduction algorithm for SDP feasibility problems.

Input: X0 as a solution of the semidefinite relaxation (34);

Set the desired rank: k ∈ N+;

Set tolerance: ε > 0;

Set counter of iterations: t = 0;

Set counter of the "constant-rank" iterations: s = 0;

Set maximum number of the "constant-rank" iterations: M ∈ N+;

while ε-rank(Xt) > k and s < M do

1. define r = ε-rank(Xt);

2. find V ∈ Rn×r such that X = V V T ;

3. solve a feasibility problem with constraint (52) to find a nonzero ∆;

4. find λ1 as the maximum-magnitude eigenvalue of ∆;

5. take α = − 1
λ1

;

6. set t = t + 1;

7. define Xt = V (Ir + α∆)V T ;

8. if ε-rank(Xt) = ε-rank(Xt−1) set s = s + 1, otherwise s = 1;

end

Output: Xt;

Assumption 3.1. Let F∗
0 be a set of optimal solutions of the convex relaxation (34) of the

rank-constrained optimization problem (30). Then there exists a rank-k solution X̂ ∈ F∗
0

that is also an optimal solution of the rank-constrained optimization problem (30).

In the original version of Algorithm 2, in order to maintain g(X+) = g(X), that is,

tr(CX+) = tr(CX), it is required that ∆ ∈ Sr meets the condition

tr(V T CV ∆) = 0, (54)

where V ∈ Rn×r comes from the decomposition (49). Under Assumption 3.1, Algorithm 2

can even find a solution of the rank-constrained SDP problem (30), if the fourth point of

the while-loop in Algorithm 2 finds ∆ satisfying both (54) and (52), instead of just (52).

Note that Algorithm 2 requires converting any given rank-constrained problem into

the standard form of SDP programs (12) with an additional rank constraint. However,

49

this conversion may be impractical in real-life problems, as observed in Chapter 4 and

Chapter 5 when dealing with applications.

3.2.4 Convex iteration as a rank reduction algorithm

In [27, §4.4.2], the author proposed a solution approach for the rank-constrained feasibility

problem (36) by iteratively solving two convex problems until convergence. The following

sequence of convex problems is solved during the t-th iteration:

Xt = argmin
X∈Sn

+

tr(Ut−1X)

X ∈ C,

(55)

and
Ut = argmin

U∈Sn
+

tr(UXt)

In − U ⪰ 0,

tr(U) = n − k,

(56)

where C is a convex set, k ∈ N+ is the desired rank and Ut−1 in (55) is the so-called

direction matrix found by solving (56) in the previous iteration. We set U0 = 0 so that

in the first iteration, the problem (55) becomes equivalent to the convex relaxation (34)

of the rank-constrained optimization problem (30). On the other hand, if we set U0 = In,

the first iteration is equivalent to the trace heuristic (39).

We provide insight into how this method works. Due to the optimality of Xt for (55)

and the optimality of Ut for (56) in the t-th iteration, we have

tr(X1U1) ≥ tr(X2U1) ≥ tr(X2U2) ≥ tr(X3U2) ≥ tr(X3U3) ≥ ... (57)

Consequently, among iterations, the optimal objective values of the problem (56) satisfy

tr(X1U1) ≥ tr(X2U2) ≥ tr(X3U3) ≥ ... (58)

Since the objective function of the SDP problem (56) represents the sum of n−k smallest

eigenvalues of Xt as introduced in [2] (see Appendix B.2), the iterative process guarantees

that for eigenvalues λ1 ≥ ... ≥ λn ≥ 0 of particular solutions X1, X2, X3, ... it holds

n∑
j=k+1

λj(X1) ≥
n∑

j=k+1
λj(X2) ≥

n∑
j=k+1

λj(X3) ≥ ... (59)

50

Keeping in mind the statement of Lemma 3.1, the natural effort is to achieve the

matrix Xt (for some t) with a zero-sum of its n − k smallest eigenvalues, that is,

tr(UtXt) =
n∑

j=k+1
λj(Xt) = 0. (60)

The stopping criterion (60) guarantees that the rank of the matrix Xt is at most k.

Theoretically, it does not have to be reached since the inequalities in (59) are not strict.

However, it works well in practice, as demonstrated in [27, §4].

In numerical computation, the task is to find a solution with ε-rank (Definition 3.1)

equal to k. To ensure that all the n − k smallest eigenvalues are lower than ε, we can

adjust the stopping criterion (60) as follows

tr(UtXt) <
ε

n − k
. (61)

Since convergence is not always guaranteed, we can also add a stopping criterion that

limits the maximum number of consecutive iterations handling a solution of the same

rank. The updated algorithm is summarized below as Algorithm 3.
Algorithm 3: The implemented algorithm of the convex iteration.

Initialize: U0 = 0;

Set the desired rank: k ∈ N+;

Set tolerance: ε > 0;

Set counter of iterations: t = 1;

Set counter of the "constant-rank" iterations: s = 0;

Set maximum number of the "constant-rank" iterations: M ∈ N+;

Find Xt as a solution of (55);

Find Ut as a solution of (56);

while tr(XtUt) > ε
n−k

and s < M do

1. set t = t + 1;

2. find Xt as a solution of (55);

3. find Ut as a solution of (56);

4. if ε-rank(Xt) = ε-rank(Xt−1) set s = s + 1, otherwise s = 1;

end

Output: Xt;

51

Similarly to the log-det heuristic (Algorithm 1), if the convex iteration (Algorithm 3)

finds a rank-k solution, it is a feasible solution of the rank-constrained optimization prob-

lem (30). In case the algorithm stops on the criterion s ≥ M , the resulting Xt can be

represented as a solution of rank k with respect to a tolerance τ > ε.

3.3 Methods for solving rank-constrained optimization prob-

lems

In this section, we present revised versions of the methods used to solve the rank-

constrained feasibility problem (36), as discussed in the previous section, in order to

adapt them for solving the rank-constrained optimization problem (30). Let us recall the

formulation of the rank-constrained optimization problem:

min
X∈Sn

+
g(X) := tr(CX)

X ∈ C,

rank(X) ≤ k,

(30)

where C ∈ Sn, C is a convex set and k ∈ N+ is the desired rank. Let us denote the optimal

solution of (30) as X∗ with the corresponding optimal value g∗ := g(X∗).

Furthermore, we propose a bisection algorithm that can find an optimal solution of

the rank-constrained optimization problem (30) under some specific assumptions when

provided with a feasible solution of the rank-constrained feasibility problem (36).

3.3.1 Bi-criterion heuristics

Standardly, the rank-constraint in the rank-constrained optimization problem (30) is ad-

dressed in a similar manner as the rank-constrained feasibility problem (36), where the

rank is minimized instead of being constrained. Since the objective function g(X) :=

tr(CX) is minimized in the rank-constrained optimization problem (30), it can be refor-

mulated as a bi-criterion optimization problem of the form

min
X∈Sn

+
min{g(X), rank(X)}

X ∈ C,
(62)

where C is the convex set of the rank-constrained optimization problem (30).

52

When solving the bi-criterion problem (62) using scalarization techniques (as described

in [19, §4.7.5]), a relative weight α > 0 is introduced, resulting in a classic optimization

problem of the form
min
X∈Sn

+
g(X) + α rank(X)

X ∈ C.
(63)

The methods presented for solving the rank-constrained feasibility problem (36) in

the previous section can also be applied to address the rank minimization problem of the

form (63), as proposed in [27, 36]. However, these methods involve solving bi-criterion

problems, which can be formulated as scalarization problems with the following formula-

tions:

• the bi-criterion version of the trace heuristic (39):

min
X∈Sn

+
g(X) + α tr(X)

X ∈ C,
(64)

where α > 0 is the relative weight.

• the bi-criterion version of the log-det heuristic (43) in the t-th iteration:

Xt = argmin
X∈Sn

+

g(X) + α tr((Xt−1 + δIn)−1X)

X ∈ C,

(65)

where α > 0 is the relative weight and δ > 0 is a small regularization constant.

• the bi-criterion version of the convex iteration (55) in the t-th iteration:

Xt = argmin
X∈Sn

+

g(X) + α tr(Ut−1X)

X ∈ C,

(66)

where α > 0 is the relative weight and Ut−1 is obtained by (56).

Although the bi-criterion versions of the methods (64), (65), (66) are commonly used

to solve the rank-constrained optimization problem (30), they still provide only its feasible

solutions. It is worth noting that for α = 0, these bi-criterion versions of the methods are

equivalent to the convex relaxation (34). Therefore, it is assumed that α > 0.

53

By choosing an appropriate value of α > 0, the bi-criterion versions of the methods

can yield a rank-k solution X̂ with the optimal value ĝ := g(X̂). The feasibility of such

X̂ for the rank-constrained optimization problem (30) provides an upper bound for the

optimal value of (30), which can be expressed as

g∗ ≤ ĝ. (67)

As the bi-criterion versions of the methods take into account the objective function g(X)

of the rank-constrained optimization problem (30), they may offer a better upper bound ĝ

compared to the original versions of these methods (see (37)), when an appropriate α > 0

is chosen. However, using these methods requires dealing with the optimal choice of the

relative weight α > 0, which can potentially prolong the computation.

3.3.2 Modified heuristics

An alternative perspective on the rank-constrained optimization problem (30) to consider

the trade-off between the objective function g(X) and the rank of X, as proposed in [36].

The trade-off graph for the rank-constrained optimization problem (30) can be obtained

by solving a modified rank-constrained feasibility problem of the form

find X ∈ Sn
+

X ∈ C,

g(X) ≤ γ,

rank(X) ≤ k

(68)

for various values of γ ∈ R and k ∈ N+. Such a trade-off graph is illustrated by Figure 5

and Figure 6, from which an optimal solution X∗ can be read.

As the objective function g(X) = tr(CX) is linear, the constraint g(X) ≤ γ in (68) is

also linear. Therefore, the problem (68) fits the structure of the rank-constrained feasi-

bility problem (36) and can be solved using methods from Section 3.2. Specifically, when

applying these methods to solve the modified rank-constrained feasibility problem (68),

they have the following formulations:

54

• the modified version of the trace heuristic (39):

min
X∈Sn

+
tr(X)

X ∈ C,

g(X) ≤ γ,

(69)

where γ ∈ R and C is a convex set from (68).

• the modified version of the log-det heuristic (43) in the t-th iteration:

Xt = argmin
X∈Sn

+

tr((Xt−1 + δIn)−1X)

X ∈ C,

g(X) ≤ γ,

(70)

where γ ∈ R, δ > 0 is a small regularization constant and C is a convex set from

(68).

• the modified version of the convex iteration (55), (56) in the t-th iteration:

Xt = argmin
X∈Sn

+

tr(Ut−1X)

X ∈ C,

g(X) ≤ γ,

(71)

where γ ∈ R, Ut−1 is obtained by (56) and C is a convex set from (68).

It is impractical to solve the modified trace heuristic (69), the modified log-det heuris-

tic (70), and the modified convex iteration (71), (56) for every possible value of γ ∈ R.

Therefore, our goal is to design a bisection algorithm that selects specific values of γ for

which the modified rank-constrained feasibility problem (68) is solved, and finds a solution

to the rank-constrained optimization problem (30) within a fixed number of iterations.

This algorithm is presented in Subsection 3.3.4.

3.3.3 Low-rank solutions of the convex relaxation

As mentioned in Subsection 3.2.3, the rank reduction algorithm (Algorithm 2) has been

designed to search for a low-rank solution within the set of optimal solutions of the

semidefinite relaxation (34). This algorithm is applicable when C is affine (44) and As-

sumption 3.1 is satisfied, as illustrated in Figure 5. The trade-off graph shows X0 as an

55

Figure 5: Trade-off between the objective function g(X) and rank(X). Illustration

of finding a rank-k solution among the optimal solutions of the relaxation, where X0 represents

a solution of the relaxation with the optimal value g0 := g(X0), while X∗ denotes an optimal

solution of the rank-constrained problem (30) with objective value g∗ := g(X∗).

optimal solution of the relaxation (34) with the optimal value g0 := g(X0) and it can be

observed that there exists a rank-k solution X∗ with the objective value g∗ := g(X∗) equal

to g0. Since X∗ is a feasible solution of the convex relaxation (34) and g0 gives a lower

bound on g∗ (see (35)), it follows that X∗ is an optimal solution of the rank-constrained

optimization problem (30).

Besides using the rank reduction algorithm (Algorithm 2 with (54)) to search for

low-rank solutions among solutions of the SDP relaxation (34), we suggest applying the

modified trace heuristic (69), the modified log-det heuristic (70) and the modified con-

vex iteration (71), (56) for γ = g0. These modified versions of methods for solving the

rank-constrained feasibility problem (36) allow searching for low-rank solutions among

optimal solution of the convex relaxation (34), not only semidefinite relaxation in parti-

cular. Moreover, also in the semidefinite case, they do not require the rank-constrained

optimization problem (30) to be given in its standard form of SDP program (12) with

additional rank constraint.

The situation where Assumption 3.1 does not hold is depicted in Figure 6 as the

opposite scenario. It can be observed that there is no rank-k solution that yields an

56

Figure 6: Trade-off between the objective function g(X) and rank(X). Illustration of

finding a rank-k solution with the optimal value g∗ lying between g0 and ĝ, where X0 represents

a solution of the relaxation with the optimal value g0 := g(X0), X∗ denotes an optimal solution of

the rank-constrained problem (30) with objective value g∗ := g(X∗), and X̂ represents a feasible

solution of the rank-constrained optimization problem with objective value ĝ := g(X̂).

objective value equal to g0. We address this situation in the following subsection.

3.3.4 Proposed bisection algorithm

Let X∗ be an optimal solution of the given rank-constrained optimization problem (30)

with the optimal value g∗ := g(X∗) and the desired rank rank(X∗) ≤ k. Similarly, X0 is

a solution of the convex relaxation (34) with the optimal value g0 := g(X0) and rank(X) =

l > k and X1 is a feasible solution of the rank-constrained optimization problem (30), for

which g1 := g(X1) and rank(X1) = k. Our aim is to design a technique that leverages this

information to find an optimal solution of the rank-constrained optimization problem (30).

Firstly, it is important to note that the convex relaxation (34) provides a lower bound

on the optimal value of the rank-constrained optimization problem (30), as discussed in

Section 3.1. This relationship is expressed as

g∗ ≥ g0. (35)

Secondly, as mentioned in Section 3.2, the rank-constrained feasibility problem (36) gives

57

an upper bound on the optimal value of the rank-constrained optimization problem (30).

Recall that we have

g∗ ≤ g1. (37)

Therefore, we can conclude that the optimal value of the rank-constrained optimization

problem (30) satisfies

g0 ≤ g∗ ≤ g1. (72)

In the following, we propose a bisection algorithm, which relies on:

i) an optimal solution X0 of the convex relaxation (34) of the rank-constrained opti-

mization problem (30) with optimal value g0,

ii) a feasible solution X1 of the rank-constrained optimization problem (30) with opti-

mal value g1,

iii) the formulation of the modified rank-constrained optimization problem (68) that

allows for finding a solution providing a desired value of the objective of (30),

iv) methods for solving the rank-constrained feasibility problem (36) that can provide

either a solution of the required rank or reliable information about its nonexistence.

The algorithm is illustrated in Figure 7, summarized as Algorithm 4, and its properties

are formulated in Proposition 3.1.

Proposition 3.1. Given an interval [l1, u1] containing g∗ and a small constant ρ > 0,

the solution X̂ provided by Algorithm 4 satisfies

|g∗ − ĝ| < ρ. (73)

Furthermore, Algorithm 4 is guaranteed to find a solution in N iterations, where

N =
⌈

log2

(
u1 − l1

ρ

)⌉
. (74)

58

Algorithm 4: Bisection algorithm for solving rank-constrained problems

Input: g0 = g(X0) where X0 is a solution of the convex relaxation (34);

g1 = g(X1) where X1 is a feasible solution of (30);

Initialize: X̂ = X1;

Set counter: t = 1;

Set tolerance for optimal value: ρ > 0;

Set tolerance for rank: ε > 0;

Set interval for γ: lt = g0, ut = g1;

while |ut − lt| ≥ ρ do

1. set γ = lt+ut

2 ;

2. set t = t + 1;

3. solve the modified rank-constrained feasibility problem (68) for γ;

if there exist a solution Xt of (68) then

set X̂ = Xt, lt = lt−1 and ut = γ;

else
set set Xt = Xt−1, lt = γ and ut = ut−1;

end

end

Output: X̂ as a ρ-optimal solution of (30) satisfying rank(X̂) ≤ k, ĝ := g(X̂);

Proof. Denote

F = {X ∈ C | g(X) ≤ γ, rank(X) ≤ k}

the set of feasible solutions of (68). In each iteration of Algorithm 4 we either find Xt ∈ F

satisfying g∗ ≤ g(Xt) ≤ γ or we find out that no such solution exists. In the latter case

we have that for all X ∈ F it holds g(X) > γ and therefore g∗ = infX∈F ≥ γ. Therefore,

in each iteration, the property g∗ ∈ [lt, ut] is satisfied. Our aim now is to show that in

each iteration it holds g(X̂) ∈ [lt, ut]. Since, at the initialization, X̂ = X1 is chosen so

that g(X1) = u, the property is satisfied in the first iteration. Next we show that if

g(Xt) ∈ [lt, ut], then g(Xt+1) ∈ [lt+1, ut+1]. If (68) is feasible, then g(Xt+1) ≤ γ = ut+1.

Also, in this case lt+1 = lt ≤ g∗ ≤ g(Xt+1). On the other hand, if (68) is infeasible, we

have that Xt+1 = Xt and lt+1 = γ ≤ g∗ ≤ g(Xt) ≤ ut. Let [lN , uN] be the final interval

satisfying uN − lN < ρ. We have that the both values g∗ and g(X̂) belong to [lN , uN] and

59

Figure 7: Illustration of the bisection algorithm (Algorithm 4). Starting with the

interval [g0, g1] provided by a solution X0 of the relaxation (34) and a feasible solution X1 of

the rank-constrained problem (30). In the first iteration, X2 denotes a feasible solution with

objective value g2. Since rank(X2) = k, the interval is reduced to [g0, g2]. The procedure is

repeated until the interval [g4, g3] is obtained having a length below ε. Finally, the solution X3

is marked as an optimal solution, as it provides the lowest value of g(X) among the considered

feasible rank-k solutions.

therefore

|g(X̂) − g∗| ≤ uN − lN < ρ.

In addition, the initial interval [l1, u1] is reduced until

u1 − l1
2t

< ρ (75)

for some t. From here, we can conclude that for a fixed ρ > 0, the number of iterations

N is given by (74).

3.3.5 Computational aspects of the bisection algorithm

In this subsection, we discuss factors that affect how well the algorithm works, such as

the constant ρ that determines the accuracy of the final solution X̂. We will examine

the computational issues that could arise if the condition stated in iv) is not met. It is

60

worth noting that this is precisely the situation we face since only methods described in

Section 3.2 are at our disposal to solve the problem (68). In addition, we have to deal

with the ε-rank in the implementation of the algorithm.

Since the number of iterations in Algorithm 4 depends on the length of the initial

interval [l1, u1] and the chosen ρ > 0 (see (75)), it can be useful to accelerate the com-

putation by finding a tighter initial interval [l1, u1]. Rather than loosening the accuracy

tolerance ρ, one can find a lower value of the upper bound u1 = g1, for example, by solv-

ing the bi-criterion algorithms of Section 3.2, namely the bi-criterion trace heuristic (64),

the bi-criterion log-det heuristic (65) or the bi-criterion convex iteration (66), (56). Since

these methods also take into account the minimization of the original objective function

g(X), they could give a better upper bound on g∗. For this purpose, the choice of the

relative weight α > 0 can be arbitrary so that we have a feasible solution of the desired

ε-rank. We analyze this hypothesis when solving generated problems in Section 4.4.5.

As we discussed in previous subsections, there are methods for solving the rank-

constrained feasibility problem (36), such as the log-det heuristic (Algorithm 1) and the

convex iteration (Algorithm 3). However, these are not guaranteed to find a feasible so-

lution of (30) even if such a solution exists. Therefore, if these algorithms are used to

solve (68) in step 3 of Algorithm 4, they can provide a solution with ε-rank higher than k

even for γ ≥ g∗. As a result, the found solution X̂ can only be considered as an approxi-

mation of the optimal solution X∗. On the other hand, when changing the value of ε, the

algorithm can find another approximation of the optimal solution X∗. Nevertheless, even

the bisection algorithm (Algorithm 4) implemented with Algorithm 1 or Algorithm 3 can

work in practice, as we observe in numerical experiments in the upcoming sections.

61

4 Correlation matrix approximation

This chapter focuses on finding the optimal approximation of an empirical correlation

matrix, which is a symmetric matrix with multiple negative eigenvalues. In the literature,

this problem is known as the nearest correlation matrix problem, as discussed in [60] and

[57]. Throughout this chapter, we will refer to it as the "NCM problem". Additionally,

we will discuss the "rank-constrained NCM problem", which involves finding the closest

low-rank correlation matrix to a given empirical correlation matrix.

Recall the formulations of the NCM problem and the rank-constrained NCM problem

from Example 1.1. For a given empirical correlation matrix C ∈ Sn, the NCM problem is

formulated as follows

min
X∈Sn

∥C − X∥F

Xii = 1, i = 1, ..., n,

X ⪰ 0.

(3)

When the approximation of the given empirical correlation matrix C ∈ Sn is assigned to

have a desired rank k ∈ N+, the rank-constrained NCM problem is formulated in the form

min
X∈Sn

∥C − X∥F

Xii = 1, i = 1, ..., n,

X ⪰ 0,

rank(X) ≤ k.

(4)

Note that the NCM problem (3) can be viewed as the rank-constrained NCM problem (4),

if we choose k = n.

The NCM problem (3) and the rank-constrained NCM problem (4) can be considered

as representatives of standard matrix approximation problems, where m = n, A = In

and B = In in their generalized formulation (1). The task is to find a (low-rank) matrix

X ∈ Sn that satisfies the properties of a correlation matrix as defined in Definition 1.1,

and also serves as the best approximation of the empirical correlation matrix C ∈ Sn

under the Frobenius norm.

The NCM problem (3) arises when the data used to construct the correlations are

asynchronous or incomplete, or when the models are stress-tested by artificially adjusting

62

individual correlations. It is crucial to solve the NCM problem to prevent subsequent

calculations from breaking down due to negative variances or volatilities, as explained

in [60].

As stated in [57] and [106], the rank-constrained NCM problem arose as part of the

calibration of the so-called multi-factor market model of interest rates. Financial insti-

tutions use this model to price their portfolios of interest rate derivatives, with interest

rates as variables assumed to follow log-normal stochastic processes. Due to the use of

historical data, a correlation structure of interest rates can be extracted. The idea of

the model is then to implant the correlation structure into the stochastic processes for

the interest rates so that the model can appropriately describe the dynamics of interest

rates and pricing can be more accurate. If the model works with k factors, it is evident

that the rank of the correlation matrix should not exceed k. Such a correlation matrix

cannot be used if the rank is higher than the number of factors, which is almost always

the case. Therefore, a low-rank correlation matrix is required that best approximates the

given empirical correlation matrix under the Frobenius norm, which makes the problem

of finding the nearest low-rank correlation matrix (4) so significant. It is essential to note

that in practical applications the number of interest rates in the model can be enormous,

resulting in a high-dimensional correlation matrix. On the other hand, the term structure

of interest rates is driven by multiple factors (four or more), but definitely fewer than the

dimension of the matrix.

The following subsections provide an overview of publications addressing the (low-

rank) correlation matrix approximation. Furthermore, we present our reformulations of

these problems using the transformations introduced in Chapter 2. A significant part of

this chapter is devoted to discussing numerical results. When solving the generated rank-

constrained NCM problems, we focus on demonstrating the performance of the bisection

algorithm (Algorithm 4) proposed in Chapter 3. Some of the results summarized in this

chapter were previously published in the conference paper [44].

4.1 Literature review

The NCM problem (3) and its rank-constrained version (4) gained attention in the 2000s

due to their significance in various fields such as finance, machine learning, and signal

63

processing. In particular, researchers were interested in developing techniques for esti-

mating the structure of a specific correlation matrix. This section offers a brief outline of

the most well-known algorithms for solving these problems.

In the literature, the NCM problem (3) is first mentioned in [60]. As the author ex-

plains, he was approached by a London fund management company that encountered this

problem in 2000. In [60], an alternating projections algorithm is derived for computing (3),

which is an iterative algorithm that projects at each iteration onto the set of matrices

with unit diagonal and the cone of symmetric positive semidefinite matrices. Although

the alternating projections algorithm is widely used, it can converge slowly, especially for

large matrices. In 2006, the authors of [82] derived a preconditioned Newton method to

solve the NCM problem, which deals with the unconstrained dual of the original prob-

lem and has quadratic convergence. These results were further improved in [16], where

an algorithm was introduced that provided a speed-up over the original preconditioned

Newton method and was applicable to large-dimensional matrices. Both the alternating

projections algorithm and the algorithm introduced in [16] have been implemented in the

NAG Library in Matlab [71].

A few years later, the rank-constrained NCM problem (4) was first mentioned in the

work [106]. The authors noticed the need to find a low-rank approximation to a corre-

lation matrix in the publication [20] that deals with the market model of interest rate

dynamics. They transformed the rank-constrained NCM problem into a minimization-

maximization problem using the Lagrange multiplier method, which allowed them to solve

the inner problem by spectral decomposition and the outer problem by the gradient de-

scent method. Shortly after, majorization was suggested as a suitable rank reduction

method in [81] followed by the introduction of a geometric optimization algorithm based

on parameterizing the constraint set by the Cholesky manifold in [57]. This publication

also established a connection between the algorithm and the Lagrange multiplier method.

Later, in 2010, the authors of [17] tackled the rank-constrained NCM problem and derived

an explicit solution for the case when k = 1. For the general case, they investigated sev-

eral numerical methods designed for specific norm minimization problems, including the

alternating projections algorithm and the spectral projected gradient method. Although

the alternating projections method lacks convergence results, it works well in practice. In

64

comparison, the projected spectral gradient outperformed other approaches. This method

is also included in the NAG Library in Matlab [71].

There have been attempts to formulate the NCM problem as an SDP program. As

discussed in [60], using the vectorization of a matrix to deal with the Frobenius norm, as

introduced in [94] leads to a large-scale problem that cannot be solved by standard SDP

solvers. Later in [7], an SDP approach was introduced to solve the NCM problem. In

reality, they handle a mixed-cone formulation, for which they derive specific primal-dual

interior-exterior-point methods. The authors of [69] also used SDP to represent the sum of

the k largest eigenvalues (see Appendix B.3) and introduced an iterative method called the

semi-smooth Newton method. From this point of view, our SDP reformulation gives a new

insight into the NCM problem. Today, the rank-constrained NCM problem (4) remains

an active area of research, as evidenced by recent publications such as [31] and [93].

4.2 SDP reformulation of the NCM problem

In this section, we apply the transformations from Section 2.3 to convert the NCM prob-

lem (3) into an SDP program of the form (12). It should be noted that [60] considers

an SDP reformulation of the NCM problem (3) to be impractical to handle the Frobe-

nius norm in the objective due to the enormous number of constraints arising after using

the vectorization of matrix C − X. Therefore, we propose a new approach to handle

the Frobenius norm that allows us to solve the SDP program efficiently using standard

solvers.

As the feasibility set of the NCM problem (3) is defined by linear and semidefinite

constraints, our focus is solely on handling the Frobenius norm in the objective. Using

the result of Proposition 2.5, we can equivalently express the NCM problem in the form

min
X∈Sn,Z∈Sn

tr(Z)

Xii = 1, i = 1, ..., n,

X ⪰ 0,

Z ⪰ (C − X)(C − X)T .

(76)

To sum up the transformation, a new symmetric variable Z ∈ Sn was introduced and the

Frobenius norm in the objective was replaced by the linear function tr(Z) and an addi-

tional constraint Z ⪰ (C − X)(C − X)T .

65

Using the Schur complement property from Lemma 2.1, the last constraint of (76) can

be expressed as a semidefinite constraint of the form

 In (C − X)T

C − X Z

 ⪰ 0. (77)

Hence, we obtain an equivalent SDP reformulation of the NCM problem (3) that has the

following formulation

min
X∈Sn,Z∈Sn

tr(Z)

Xii = 1, i = 1, ..., n,

X ⪰ 0, In (C − X)T

C − X Z

 ⪰ 0.

(78)

Our SDP reformulation (78) allows us to exclusively use SDP tools to solve the NCM

problem (3). Furthermore, our approach is not limited to handling the Frobenius norm,

as it can also handle other norms in the objective of the NCM problem, such as the l1,

l2 or l∞ norm (see Section 2). Additionally, our approach can handle the problem of

completing a correlation matrix with the objective ∥W ◦ (C − X)∥F , where W ∈ Sn is

defined as in (2). As the Hadamard product (Definition A.4) in the objective does not

affect our SDP reformulation, it only requires reformulating the constraint (77) in the

form  In (W ◦ (C − X))T

W ◦ (C − X) Z

 ⪰ 0. (79)

4.3 SDP reformulation of the rank-constrained NCM problem

When considering the rank-constrained NCM problem (4), we deal with the Frobenius

norm in the objective by applying the same procedure as in the NCM problem (3) de-

scribed earlier. This yields an equivalent rank-constrained SDP problem that takes the

66

form
min

X∈Sn,Z∈Sn
tr(Z)

Xii = 1, i = 1, ..., n,

X ⪰ 0,

rank(X) ≤ k, In (C − X)T

C − X Z

 ⪰ 0.

(80)

The rank-constrained SDP reformulation (80) of the rank-constrained NCM prob-

lem (4) allows the use of methods to solve rank-constrained SDP problems presented in

Chapter 3. It is worth noting that the SDP reformulation of the NCM problem (78) is ac-

tually the SDP relaxation of the rank-constrained SDP reformulation (80). As explained

in Section 3.1, standard solvers for SDP problems are known to converge to a high-rank

optimal solution. Therefore, one must consider using rank minimization heuristics or rank

reduction algorithms if the solution of the SDP relaxation (78) fails to provide a rank-k

solution.

Due to the constraint on the unit diagonal of the matrix variable X, whose rank is

restricted, the trace heuristic is equivalent to the SDP relaxation, since the trace of X is

a constant function. However, other algorithms in Chapter 3 do not have this drawback.

Therefore, we offer their formulations to solve the rank-constrained NCM problem (4)

below.

In Algorithm 1, the log-det heuristic (43) applied to the rank-constrained NCM prob-

lem (80) has the form

Xt = argmin
X∈Sn,Z∈Sn

tr((Xt + δIn)−1X)

Xii = 1, i = 1, ..., n,

X ⪰ 0, In (C − X)T

C − X Z

 ⪰ 0,

(81)

where C ∈ Sn is the given empirical correlation matrix and δ > 0 is a small regularization

constant.

In Algorithm 3, the convex iteration (55), (56) applied to solve the rank-constrained

67

NCM problem (80) is formulated as follows

Xt = argmin
X∈Sn,Z∈Sn

tr(Ut−1X)

Xii = 1, i = 1, ..., n,

X ⪰ 0, In (C − X)T

C − X Z

 ⪰ 0,

(82)

and
Ut = argmin

U∈Sn
tr(XtU)

0 ⪯ U ⪯ In,

tr(U) = n − k,

(83)

where C ∈ Sn is the given empirical correlation matrix and k ∈ N+ is the desired rank.

The bi-criterion and modified versions of the log-det heuristic and the convex iteration

can be formulated analogously to (65), (66), and (70), (71), respectively.

Unlike the algorithms mentioned above, applying the rank reduction algorithm (Algo-

rithm 2) requires a reformulation of the rank-constrained SDP reformulation (80) into the

standard form of the SDP problem (12) with an additional rank constraint. To achieve

this, we introduce the new variable Y ∈ S3n, which yields a standard-like reformulation

of the rank-constrained NCM problem (4) in the form

min
Y ∈S3n,X∈Sn

tr(Y)

Yii = 1, i = 1, ..., n,

Y =


X 0 0

0 In (C − X)T

0 C − X Z

 ⪰ 0,

rank(Y) ≤ n + k.

(84)

It should be noted that, apart from the unit diagonal of X ∈ Sn, there are also numerous

linear constraints that define Y ∈ S3n as a block matrix containing another matrix variable

X ∈ Sn. Consequently, even if we establish specific requirements for ∆ in Algorithm 2,

the algorithm is guaranteed to converge only for high values of the desired rank k due to

the upper bound (45).

However, we can take advantage of the fact that we modified the original version

of Algorithm 2 to find a feasible solution for the rank-constrained problem instead of

68

seeking a rank-k solution among optimal solutions to the SDP relaxation. Thanks to the

semidefinite structure of the original rank-constrained NCM problem (4), we can directly

apply Algorithm 2 to find a feasible solution. Note that there are n linear constraints that

define the feasibility set of the NCM problem (4), implying that Algorithm 2 is guaranteed

to converge to a feasible rank-k solution if k ≤ ⌊
√

8n+1−1
2 ⌋, as shown in (46).

4.4 Numerical results

This section presents the numerical results of the NCM problem (3) and the rank-

constrained NCM problem (4). First, we deal with the problems from Example 1.1 to

illustrate how the algorithms work. Then, we validate the results of the SDP reformulation

(78) while solving the NCM problem (3) using standard algorithms involved in the NAG

library in Matlab [71]. Last but not least, we solve the rank-constrained NCM problem

(4) to demonstrate the performance of the bisection algorithm (Algorithm 4). We also

compare algorithms for solving rank-constrained NCM problems whose formulations are

presented in Section 4.3.

Our experiments were carried out in MATLAB R2019a [71] on an Intel Core i7-4690

CPU processor running at 3.6GHz. To solve SDP problems, we used the SDPT3 solver,

which is included in the CVX modeling system [56, 55], a package that specifies and

solves convex problems. The empirical correlation matrices were generated as symmetric

matrices with a unit diagonal, and their elements were drawn from the interval [-1,1].

We computed the rank of a matrix as a ε-rank (see Definition 3.1) for ε = 10−6. In all

algorithms, we use these inputs: ρ = 10−6, M = 20, δ = 0.01 and α = 10.

4.4.1 Illustrative example

First, recall the assignment of Example 1.1. Given an empirical correlation matrix

C =



1 −0.323 0.146 0.553 −0.252 0.201 −0.034 −0.241

−0.323 1 0.260 0.140 0.573 0.015 0.269 0.282

0.146 0.260 1 −0.060 0.788 0.774 −0.718 0.910

0.553 0.140 −0.060 1 −0.006 0.074 0.499 −0.230

−0.252 0.573 0.788 −0.006 1 0.890 −0.220 0.881

0.201 0.015 0.774 0.074 0.890 1 −0.193 0.822

−0.034 0.269 −0.718 0.499 −0.220 −0.193 1 −0.537

−0.241 0.282 0.910 −0.230 0.881 0.822 −0.537 1


69

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
SDP relaxation

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 1 ()

Algorithm 3 ()

Figure 8: Optimal values yielded by different algorithms in solving Example 1.1.

Values of the objective ∥C − X∥F , where X is a solution obtained by a particular algorithm,

with respect to the relative weight α > 0.

with eigenvalues −0.13, −0.04, 0.05, 0.23, 0.63, 1.63, 1.74, 3.89, the task is to find its nearest

correlation matrix under the Frobenius norm. After solving the SDP reformulation (78)

of the NCM problem (3), we obtain an optimal approximation of C in the form

X =



1 −0.332 0.136 0.551 −0.227 0.178 −0.031 −0.230

−0.332 1 0.240 0.146 0.542 0.054 0.246 0.277

0.136 0.240 1 −0.067 0.787 0.754 −0.683 0.894

0.551 0.146 −0.067 1 −0.014 0.086 0.491 −0.231

−0.227 0.542 0.787 −0.014 1 0.826 −0.200 0.902

0.178 0.054 0.754 0.086 0.826 1 −0.227 0.806

−0.031 0.246 −0.683 0.491 −0.200 −0.227 1 −0.539

−0.230 0.277 0.894 −0.231 0.902 0.806 −0.539 1


with eigenvalues 0, 0, 0.02, 0.22, 0.59, 1.60, 1.73, 3.85. The computation took 0.006 seconds

and the optimal value of ∥C − X∥F is 0.1649. From the viewpoint of these results, the

NCM problem (3) can be seen as a tool forcing negative eigenvalues of the empirical

correlation matrix to become zeros and correspondingly adjusting particular entries of X

(representing correlations) to achieve this.

Although the NCM problem (3) aims to find a correlation matrix with several zero

70

eigenvalues, the resulting rank of the correlation matrix may not be as low as needed

for the application. As can be seen from its eigenvalues, the matrix X in Example

1.1 has a rank of 6. If we consider the rank-constrained NCM problem (4) with k =

4, the SDP relaxation (the NCM problem (3)) alone is insufficient to obtain a rank-4

solution. Therefore, we must apply methods for solving rank-constrained SDP problems

from Section 3.2 and Section 3.3 to achieve a rank-4 approximation of C.

Figure 8 shows the distance between the empirical correlation matrix C and its ap-

proximation X found using different algorithms, with respect to the chosen relative weight

α > 0 required in the bi-criterion version of the log-det algorithm (Algorithm 1 with (65))

and the bi-criterion version of the convex iteration (Algorithm 1 with (66)). The SDP

(78) yields a rank-6 solution that provides a lower bound on the optimal value of the

rank-constrained NCM problem (4). We can apply algorithms for finding a feasible solu-

tion, that is, the log-det heuristic (Algorithm 1 with (81)), the rank reduction algorithm

(Algorithm 2) and the convex iteration (Algorithm 3 with (82), (83)). Since they are not

bi-criterion, their values of ∥C − X∥F are displayed as constant functions in Figure 8. We

can see that the rank reduction algorithm (Algorithm 2) found a feasible solution that

provides the worst approximation of C. Among the feasible solutions found (displayed as

lines), the convex iteration (Algorithm 3 with (82), (83)) yields the best approximation

of the empirical matrix C.

These approximations can be improved when using the bi-criterion versions of the log-

det heuristic (65) and the bi-criterion version of the convex iteration (66), (56). However,

Figure 8 indicates that both bi-criterion algorithms yield worse results when using higher

values of the relative weight α > 0. The bi-criterion version of the log-det heuristic

(Algorithm 1 with (65)) only slightly outperforms the original version of the algorithm

in terms of objective values. In contrast, the bi-criterion version of the convex iteration

(Algorithm 3 with (66), (56)) delivers significantly better approximations of C even for

high values of α > 0. Notably, a higher value of α implies a smaller weight assigned to

minimizing ∥C − X∥F . In Section 4.4.5, we will investigate whether such a comparison of

algorithms holds in general.

The bisection algorithm (Algorithm 4) can improve the approximations of the em-

pirical correlation matrix C by utilizing the interval [g0, g1], which specifies the optimal

71

value g∗ of the rank-constrained NCM problem (4). Here, g0 is the optimal value of the

NCM problem (3), and g1 is the value provided by a solution obtained by the log-det

heuristic (Algorithm 1) or the convex iteration (Algorithm 3). As observed in Figure 8,

the bi-criterion versions of the methods lead to a better rank-4 feasible solution X1 for

the bisection algorithm (Algorithm 4).

Table 4 summarizes the results obtained by the bisection algorithm (Algorithm 4).

We compare the performance of the algorithm executed with the modified log-det heuris-

tic (70) and the modified convex iteration (71), (56). Since we start with a wider initial

interval [g0, g1] in the case of the log-det heuristic, the bisection algorithm (Algorithm 4)

takes one more iteration to reduce the interval so that it has a length below ε = 10−6. How-

ever, the computation time is shorter because only one optimization problem is solved

in each iteration, unlike the convex iteration (55), (56), which solves two optimization

problems. Note that small deviations between values of ĝ and ∥C − X̂∥F obtained by the

bisection algorithm (Algorithm 4) using the log-det heuristic (Algorithm 1) and the convex

iteration (Algorithm 3) are caused only by the difference in initial intervals. When calling

Algorithm 1 and Algorithm 3, we allowed a maximum of M = 20 consecutive iterations

to handle a solution with the same ε-rank. It means computation time is prolonged by

exactly those iterations of the bisection algorithm (Algorithm 4) where a rank-4 solution

is not found. When we set M = 5, the bisection algorithm (Algorithm 4) using the log-det

heuristic (Algorithm 1) and the convex iteration (Algorithm 3) took 15.65 seconds, and

45.04 seconds, respectively. These times are significantly lower than those obtained when

M = 20 and the results remain unchanged. In the last column of Table 4, we present

the maximum value of τ , which can be interpreted as the value of ε that would ensure

Algorithm 4 finds a solution of ε-rank equal to 4 in each iteration.

Figure 9 displays the first iterations and the final solutions X̂ for both versions of

the bisection algorithm (Algorithm 4): the log-det version on the left and the convex

iteration version on the right. These two graphs differ in the initial interval determined

by X0 and X1, therefore, while the log-det version finds an optimal solution X̂ in the

first half of the initial interval, the convex iteration version only slightly improves the

initial approximation X1. A more general comparison of these versions of the bisection

algorithm (Algorithm 4) is provided in Section 4.4.4 and Section 4.4.5.

72

bisection g0 g1 ĝ ∥C − X̂∥F time (s) iter. max. τ

log-det heu. 0.027192 0.280327 0.101004 0.317811 48.53 19 0.0167

convex iter. 0.027192 0.101204 0.100995 0.317796 109.71 18 0.0657

Table 4: Results obtained by the bisection algorithm in solving Example 1.1. Solving

the rank-constrained NCM problem (4) from Example 1.1. Comparison of the results obtained by

the bisection algorithm (Algorithm 4) based on solving the modified rank-constrained feasibility

problems either by the log-det heuristic (Algorithm 1) or the convex iteration (Algorithm 3) in

step 3 of Algorithm 4.

Overall, using the log-det heuristic, Algorithm 4 was able to find a correlation matrix

X̂ with nonzero eigenvalues of 3.8837, 1.8366, 1.658, and 0.6217. On the other hand,

the convex iteration yielded a solution X̂ with nonzero eigenvalues of 3.8824, 1.8362,

1.6534, and 0.6241. The difference between these solutions, measured by the Frobenius

norm, was 0.0031. Therefore, after rounding the entries of X̂, both solutions provided

an approximation of C of the form

X̂ =



1 −0.388 0.147 0.672 −0.240 0.154 −0.085 −0.211

−0.388 1 0.247 0.215 0.542 0.030 0.220 0.294

0.147 0.247 1 −0.072 0.790 0.756 −0.688 0.903

0.672 0.215 −0.072 1 0 0.122 0.556 −0.269

−0.240 0.542 0.790 0 1 0.828 −0.199 0.924

0.154 0.030 0.756 0.122 0.828 1 −0.235 0.832

−0.085 0.220 −0.688 0.556 −0.199 −0.235 1 −0.535

−0.211 0.294 0.903 −0.269 0.924 0.832 −0.535 1


.

In summary, we achieve an approximation of the given empirical correlation matrix

that satisfies the properties of a correlation matrix from Definition 1.1 and has the de-

sired rank. The structure of Algorithm 4 ensures that the found approximation is the

best possible under the Frobenius norm with respect to the specified tolerance ε. It is

important to note that Algorithm 4 is limited by the specifications of iterative algorithms,

namely the log-det heuristic (Algorithm 1) and the convex iteration (Algorithm 3), such

as the stopping criterion based on the numerical ε-rank and a maximum of M consecutive

iterations in which no change of rank occurred. Despite these limitations, Algorithm 4

succeeded in finding a rank-4 approximation to the given empirical correlation matrix C

that is superior to the one obtained by a standard method.

73

0 0.05 0.1 0.15 0.2 0.25 0.3

tr(Z)

0

1

2

3

4

5

6

7

ra
n
k
(X

)

0 0.02 0.04 0.06 0.08 0.1 0.12

tr(Z)

0

1

2

3

4

5

6

7

ra
n
k
(X

)

Figure 9: Trade-off between the objective tr(Z) and rank(X). Displayed solutions are

obtained by Algorithm 4 while solving the rank-constrained NCM problem (4) from Example 1.1.

The graphs illustrate the first iterations of the algorithm using the modified log-det heuristic

(left) and the modified convex iteration (right). The final solution X̂ is highlighted in red.

Correlation matrix completion

At this place, we also want to demonstrate that the conic optimization approach can be

applied to solve matrix completion problems. Suppose that the given empirical correlation

matrix C contains some missing entries (NaNs), such as

Cmiss =



1 NaN 0.146 0.553 −0.252 0.201 −0.034 −0.241

NaN 1 0.260 0.140 0.573 0.015 0.269 0.282

0.146 0.260 1 −0.060 NaN 0.774 −0.718 0.910

0.553 0.140 −0.060 1 −0.006 NaN 0.499 −0.230

−0.252 0.573 NaN −0.006 1 0.890 −0.220 0.881

0.201 0.015 0.774 NaN 0.890 1 −0.193 0.822

−0.034 0.269 −0.718 0.499 −0.220 −0.193 1 NaN

−0.241 0.282 0.910 −0.230 0.881 0.822 NaN 1


.

In this case, it is not sufficient to solve only the standard form of the NCM problem (3),

as we also need to handle the missing entries in Cmiss in the objective. To address this

issue, we introduce a matrix W ∈ Sn defined as (2) to solve the problem of finding the

completion of the correlation matrix, such that the found approximation X minimizes

∥W ◦ (Cmiss − X)∥F . This can be achieved by solving the NCM problem (78) with the

objective ∥W ◦ (Cmiss − X)∥F and the updated last constraint in (79). The resulting

74

completion of the empirical correlation matrix Cmiss has the following form

X =



1 −0.481 0.128 0.553 −0.238 0.191 −0.039 −0.231

−0.481 1 0.233 0.140 0.547 0.054 0.245 0.277

0.128 0.233 1 −0.060 0.789 0.752 −0.683 0.897

0.553 0.140 −0.060 1 −0.006 0.141 0.499 −0.230

−0.238 0.547 0.789 −0.006 1 0.836 −0.204 0.901

0.191 0.054 0.752 0.141 0.836 1 −0.225 0.803

−0.039 0.245 −0.683 0.499 −0.204 −0.225 1 −0.580

−0.231 0.277 0.897 −0.230 0.901 0.803 −0.580 1


providing the objective value equal to 0.1487 and having eigenvalues of 0.1597, 0.5324,

1.6813, 1.7658, and 3.8608.

To conclude, the proposed conic approach managed to solve all types of problems pre-

sented in Example 1.1, including the NCM problem (3), the rank-constrained NCM prob-

lem (4) and the correlation matrix completion. In the following, we want to demonstrate

the performance of the proposed conic approach in solving the general NCM problem (3)

and the rank-constrained NCM problem (4).

4.4.2 Solving the NCM problem

In this set of experiments, we compared the proposed SDP reformulation (78) of the

NCM problem (3) with the alternating projections algorithm and the preconditioned

Newton method implemented in the NAG library in Matlab. We generated 100 random

empirical correlation matrices C of order n = 10, n = 20, and n = 50. The results of these

experiments, shown in Table 5, demonstrate that for a larger n, the alternating projections

algorithm does not converge to a solution in the first 200 iterations. Therefore, it is more

effective to use the Newton preconditioned method, as suggested in [16].

Although our SDP approach requires more computational time than the two standard

approaches due to the need to initialize the CVX modeling system, it still managed to

find an optimal solution with the same (or even slightly lower) optimal value than the

other two methods for the NCM problem (3). However, for practical purposes, it is more

efficient to use the preconditioned Newton method. Moreover, in all 100 experiments, the

deviation between the approximations obtained by the SDP approach and the precondi-

tioned Newton method was at the level of 10−7, indicating the accuracy and reliability of

the SDP approach.

75

n
time

(AP)

time

(N)

time

(SDP)
∥Xap − C∥F ∥Xn − C∥F ∥Xsdp − C∥F

10 0.005 s 0.005 s 0.107 s 2.585818121 2.585818303 2.585818104

20 0.008 s 0.005 s 0.172 s 6.634680585 6.634680745 6.634680550

50 x 0.005 s 0.107 s x 20.3988005 20.398780

Table 5: Comparison of the existing methods and the SDP reformulation in solving

NCM problems. Comparison of solution methods for the NCM problem (3): the alternat-

ing projections algorithm (AP), the preconditioned Newton method (N), and SDP reformu-

lation (SDP). The table displays the average computation time and average optimal values

obtained over 100 randomly generated correlation matrices of order n = 10, 20, 50. The results

are taken from our paper [44].

4.4.3 Solving the rank-constrained NCM problem

In this part, we address the rank-constrained NCM problems of the form (4). First, we

investigate the performance of the bisection algorithm (Algorithm 4) using two different

methods to solve the modified rank-constrained problem (68) in each iteration: the log-det

heuristic (Algorithm 1) and the convex iteration (Algorithm 3). To test these methods,

we generate empirical correlation matrices C ∈ Sn of various sizes n and set different

target rank k.

Tables 6 and 7 present the results of applying two different methods, namely the convex

iteration and the log-det heuristic, to solve the rank-constrained NCM problem (4) via

the bisection algorithm (Algorithm 4). The goal is to find the best possible approximation

of ε-rank k for various values of k and three different empirical correlation matrices of

sizes n = 20, n = 30, and n = 40.

The bisection algorithm employs the SDP relaxation (3) and the bi-criterion versions

of the convex iteration (82), (83), and the bi-criterion of the log-det heuristic (81). As

shown in Table 6 and Table 7, the computation time, rank, and objective value g(X)

increase with the size n of the empirical correlation matrix C. Unexpectedly, the log-det

heuristic fails to converge to a solution with ε-rank equal to k when the difference between

n and k is significant. Therefore, the convex iteration version of the bisection algorithm

76

n k
semidefinite relaxation convex iteration bisection algorithm

time (s) rank g0 time (s) iter, g1 time (s) iter. ĝ

20

5

0.17 9 41.87

0.63 1 48.68 223.82 24 48.51

4 1.24 2 60.74 312.81 26 60.04

3 1.23 2 84.24 282.98 27 82.93

2 1.36 2 146.81 327.20 28 141.88

30

5

0.44 13 122.09

2.13 2 172.30 667.10 27 169.10

4 2.18 2 215.92 669.44 28 207.97

3 2.13 2 292.84 711.10 29 277.47

2 2.25 2 455.26 816.29 30 427.74

40

5

1.14 16 248.35

4.36 2 353.53 1496.8 28 350.41

4 4.32 2 429.49 1545.8 29 422.82

3 4.50 2 568.94 1604.6 30 559.47

2 6.68 3 822.99 1809.6 31 812.28

Table 6: Solving rank-constrained NCM problems of different sizes using the con-

vex iteration. Comparison of the results of the SDP relaxation (78), the convex iteration

(Algorithm 3), and the bisection algorithm (Algorithm 4) for solving the rank-constrained NCM

problem (4). The bisection algorithm used the convex iteration to solve the modified rank-

constrained problem in each iteration and started from the initial interval [g0, g1]. Both the

convex iteration and the bisection algorithm found solutions with the ε-rank equal to k.

(Algorithm 4) can be considered a more reliable method. Moreover, it starts with a tighter

interval, which can save one iteration. However, this method is more time-consuming as it

solves two optimization problems at each iteration. As in Subsection 4.4.1, we note that

the longer computation time taken by the bisection algorithm (Algorithm 4) is associated

with the choice of M for the stopping criteria.

4.4.4 Comparison of methods for solving the rank-constrained feasibility

problems

We aim to investigate whether the observations from Figure 8 can be generalized to

other scenarios. To achieve this, we generate 100 empirical correlation matrices of size

77

n k
semidefinite relaxation log-det heuristic bisection algorithm

time (s) rank g0 time (s) iter. g1 time (s) iter. ĝ

20

5

0.17 9 41.88

0.78 2 51.60 197.71 25 48.51

4 2.91 8 67.95 211.82 26 60.05

3 x x x x x x

2 x x x x x x

30

5

0.44 13 122.09

3.90 6 188.25 556.57 27 170.19

4 x x x x x x

3 x x x x x x

2 x x x x x x

40

5

1.14 16 248.35

x x x x x x

4 x x x x x x

3 x x x x x x

2 x x x x x x

Table 7: Solving rank-constrained NCM problems of different sizes using the log-

det heuristic. Results of the SDP relaxation (78), the log-det heuristic (Algorithm 1) and

the bisection algorithm (Algorithm 4) using the log-det heuristic for solving modified rank-

constrained NCM problems in each iteration of Algorithm 4. The cases, when the log-det

heuristic failed to find a solution with ε-rank equal to k, are labeled by "x". In such cases, the

bisection algorithm was not used since missing an input.

n = 20 and solve the corresponding rank-constrained NCM problems of the form (80) for

k = 4. We chose n = 20 and k = 4 to ensure that our bisection algorithm (Algorithm 4)

works for both its versions. The averaged results of these experiments are presented in

Table 8. Since the SDP relaxation (3) failed to find a rank-4 solution in any of the

100 generated problems, the usage of rank minimization heuristics and rank reduction

algorithms is reasonable. Interestingly, the objective value g(X) is significantly larger

than ∥C − X∥2
F in the case of the original log-det heuristic (Algorithm 1) and the original

convex iteration (Algorithm 3). Although they offer a wider interval [g0, g1] for Algorithm

4, we could make it significantly tighter by using [g0, ∥C −X∥2
F]. However, the bi-criterion

versions of these methods still provide a better value of ∥C − X∥F and therefore a better

78

method rank(X) g(X) ∥X − C∥F time (s) % empirical ε iters

SDP
9.94 44.45 6.66 0.31 0 2.09 1

relaxation

rank
4 113.72 10.66 1.13 100 9.32e-18 5.96

reduction

log-det
3.94 3177.18 9.52 0.92 100 1.11e-07 1.92

heuristic

log-det
4 81.26 9.00 1.40 100 4.10e-08 3.19

(α = 100)

convex
4 4254.13 9.10 1.18 100 4.30e-10 1

iteration

convex iter.
4 73.38 8.55 1.17 100 3.00e-10 1

(α = 100)

Table 8: Solving rank-constrained NCM problems using various methods. Com-

parison of methods for solving 100 rank-constrained NCM problems with k = 4 and C ∈ S20,

including the SDP relaxation (3), the rank reduction algorithm (Algorithm 4), the (bi-criterion)

log-det heuristic (Algorithm 1) and the (bi-criterion) convex iteration (Algorithm 3). The table

displays average performance metrics, including the success rate in finding a rank-k solution

denoted by "%".

rank-4 approximation of the given empirical correlation matrix C. Table 8 validates our

hypothesis from Figure 8 that the rank reduction algorithm (Algorithm 2) provides the

worst rank-4 approximation of C. In Section 4.4.6, we explore its performance when

addressing larger problems.

The results presented in Table 9 are remarkable as they show that the convex iteration

(Algorithm 3) achieved a solution of ε-rank equal to k = 4 after only one iteration.

Despite a lower number of iterations, the computation time is comparable with the log-

det heuristics. These findings validate the comparison in Figure 8, as the best performance

was obtained by the bi-criterion version of the convex iteration (Algorithm 3 with (66)).

79

4.4.5 Bisection algorithm performance

Let us investigate the performance of the bisection algorithm (Algorithm 4) using the

inputs from Table 8 and summarize the results in Table 9. As expected, when the initial

interval is wide, such as in the case of using original versions of methods, the relative

improvement provided by ĝ is low (see the first column of Table 9). The number of

iterations required depends on the length of the initial interval [g0, g1]. However, the

computation time is most affected by those iterations of the bisection algorithm that do

not provide a rank-k solution, as this is only recognized after M "constant-rank" iterations.

In the last columns of Table 9, we report the number of generated problems (out of 100)

in which each method found a rank-4 solution providing the best value of these criteria

among the considered methods. Note that in many cases, both versions of the log-det

heuristic, as well as both versions of the convex iteration, found the same values. When

comparing only the bi-criterion versions of the log-det heuristic and the convex iteration,

the bi-criterion log-det heuristic provides a better value f̂ in only 4 cases, with an average

deviation of 0.016. On the other hand, the bi-criterion convex iteration is better in 96

cases, with an average deviation of 0.047. These experiments suggest that the convex

iteration is a better tool to solve modified rank-constrained problems (68) in Algorithm 4.

4.4.6 Choice of relative weights

In the concluding section, we present the results published in [44], where we investigated

the rank reduction algorithm (Algorithm 2) to find a feasible solution and the bi-criterion

version of the convex iteration (Algorithm 3 with (66), (56)). Instead of a constant

relative weight α, we use different values of α(t) in each iteration t. However, solving

a problem with a large size n and a very low desired rank k may cause the convergence of

these algorithms to require many iterations. This could be problematic since the convex

iteration solves two optimization problems in each iteration.

For the next experiment, we generate a random correlation matrix of size n = 100,

and consider a three-factor model, which involves solving the rank-constrained NCM

problem (4) for k = 3. In the first step, we solve the rank-constrained NCM problem

(80) using the convex iteration (82) and (83). Since one of the problems is a bi-criterion

problem, selecting a suitable relative weight α(t) is essential. We set α(t) as an increasing

80

method |1 − g1−ĝ
g1−g0

| |1 − f1−f̂
f1−f0

| iters time (s) # of min(ĝ) # of min(f̂)

log-det
0.0159 0.4336 32.93 210.92 4 4

heuristic

log-det
0.6815 0.7149 26.69 212.79 3 4

(α = 100)

convex
0.0058 0.6694 33.22 309.35 79 87

iteration

convex iter.
0.8413 0.8344 26.18 305.98 78 87

(α = 100)

Table 9: Solving rank-constrained NCM problems using the bisection algorithm.

Comparison of the performance of the bisection algorithm (Algorithm 4) when using different

sources of inputs and methods to solve modified rank-constrained problems in each iteration.

The results are based on 100 generated rank-constrained NCM problems of the form (4), and

the table displays the average values computed. The first two columns correspond to the relative

improvement of gi = tr(Zi) and fi = f(Xi) = ∥C − Xi∥F .

sequence of the number of iterations t and compare its behavior. Figure 10 and Table 10

indicate that α(t) = t requires 72 iterations to find a rank-3 solution, making it slow, as

two optimization problems are solved in each iteration. Using a faster-increasing sequence

results in fewer iterations for the convex iteration, while still achieving a comparable value

of the objective function ∥C − X∥F .

Subsequently, we apply the rank reduction algorithm to solve the rank-constrained

NCM problem (80). As shown in Figure 10 and Table 10, the rank reduction algorithm

provides a much better rank-3 approximation of the empirical correlation matrix C than

the convex iteration (82),(83).

Remarkably, the rank reduction algorithm (Algorithm 2) discovered a solution of rank

k, despite the fact that it is only guaranteed to provide solutions of rank lower or equal

to ⌊
√

8n+1−1
2 ⌋ = 13. These results imply that the rank reduction algorithm (Algorithm 2)

may be a valuable tool when working with large n.

81

0 20 40 60 80 100

0

10

20

30

40

50

60

Figure 10: Trade-off graph between the rank and the objective function. Trade-off

graph between the rank and the objective function value of the solution found by the rank

reduction algorithm (green) and the convex iteration for relative weights α(t) = 2t (red), α(t) =

10t (blue) and α(t) = t (black) with t being the number of iteration, while n = 100 and k = 3.

Points represent solutions in particular iterations. The starting point [100, 0]T represents the

given full-rank correlation matrix C. The figure is taken from our paper [44] where α(t) is

labeled as ω(i) .

Convex Iter.

α(t) = 2t

Convex Iter.

α(t) = 10t

Convex Iter.

α(t) = t

Rank

Reduction

iterations 8 3 72 8

∥X − C∥F 55.90 56.09 55.80 11.18

Table 10: Comparison of the rank reduction algorithm and the convex iteration

regarding various choices of relative weights. Comparison of the rank reduction algorithm

and the convex iteration for α(t) = 2t, α(t) = 10t and α(t) = t, where t is the number of

iterations, n = 100 and k = 3.

82

5 Procrustes problems

The Procrustes problems (PPs) are a well-known class of optimization problems, named

after a character in Greek mythology called Procrustes [54]. Procrustes was a bandit who

would stretch or cut off the limbs of his victims to make them fit his iron bed. Similarly,

in Procrustes problems, the goal is to stretch or compress one set of data to make it

fit another set of data. Fortunately, solving Procrustes problems is not as painful as

Procrustes’ methods.

Recall the generalized formulation of the matrix approximation problem

min
X∈Rm×n

f(X) := ∥W ◦ (C − AXB)∥

X ∈ P ,
(1)

where A ∈ Rp×m, B ∈ Rn×q, W, C ∈ Rp×q are the data and X ∈ Rm×n is the matrix vari-

able. A general Procrustes problem is formulated as the generalized matrix approximation

problem (1), where at least one of the given matrices A ∈ Rp×m and B ∈ Rn×q does not

equal identity. It is worth noting that in standard matrix approximation problems A = Im

and B = In, such as in the problem of finding the nearest correlation matrix (3) from

Chapter 4.

In standard Procrustes problems, the matrix B is assumed to be equal to the iden-

tity matrix In, implying that the residuals C − AX have equal variance. However, in

this chapter, we also consider a more general case of weighted Procrustes problems, as

introduced in publications such as [97, 65, 74]. The classification of Procrustes problems

as balanced or unbalanced can be made based on the dimension of the matrix variable,

as described in previous works like [83, 104, 105]. Balanced Procrustes problems refer

to cases where m = n, meaning that the matrix variable is squared, while unbalanced

Procrustes problems refer to cases where m ̸= n, indicating that the matrix variable is

rectangular. In this chapter, we adopt this terminology.

As discussed in Chapter 2, the choice of matrix norm in the objective function depends

on the specific problem being solved and the characteristics of the data being analyzed.

In the objective of the Procrustes problem (1), the Frobenius norm is commonly used

[87, 104]. Some authors, such as [97] and [98], consider the l1 norm, which is a robust

alternative to the least squares. However, our conic approach also covers the l∞ norm,

83

and the spectral norm l2, as introduced in Chapter 2.

A typical Procrustes problem is formulated over orthogonal matrices, that is, the fea-

sible set P is a matrix manifold. Some authors also consider other types of feasible sets,

such as the set of positive semidefinite matrices, such as [6]. Similar to the generalized

matrix approximation problem (1), we allow for linear, semidefinite, quadratic, and rank

constraints to define the feasibility set P (see Assumption 1.1). This means that we cover

all the aforementioned classes as well as other challenging cases that are difficult to handle

using standard approaches. These may include orthogonal or oblique Procrustes prob-

lems with additional linear constraints or Procrustes problems over the set of projection

matrices.

In the following sections, we discuss the most common types of Procrustes problems,

including orthogonal, oblique, semidefinite, and projection PPs. For each subclass, we

provide an overview of the existing solution approaches. These approaches are summarized

in Table 11, which highlights the diversity of solution algorithms that have been proposed

for Procrustes problems, depending on the specific matrix norm and constraints involved,

as well as the robustness of our proposed conic approach. Furthermore, we propose the

(rank-constrained) SDP reformulations for these subclasses of Procrustes problems and

demonstrate their correctness by numerical experiments.

The computations were carried out using MATLAB R2019a [71] on a laptop equipped

with the 11th Gen Intel(R) Core(TM) i7-1165G7 processor running at 2.80GHz. To solve

the SDP programs, we utilized the SDPT3 solver, which is included in CVX, a package

for specifying and solving convex programs [56, 55]. The rank of a matrix was determined

as the ε-rank according to Definition 3.1 with respect to ε = 10−6. For some experiments,

we determine an "empirical" ε as the k-th largest eigenvalue of a solution, that is, if we

set ε equal to this value, the particular algorithm would find a solution with ε-rank equal

to k. This value can be useful to analyze the performance of the particular algorithm or

the quality of a found solution. It is important to note that higher accuracy would not

change the dynamics of the solution method, but it may require more computation time5.

5Our Matlab codes with implemented methods are available at https://github.com/TereziaF/

A-conic-approach-for-solving-matrix-approximation-problems

84

https://github.com/TereziaF/A-conic-approach-for-solving-matrix-approximation-problems
https://github.com/TereziaF/A-conic-approach-for-solving-matrix-approximation-problems

class type norm solution method source conic

OPP

balanced Frob

explicit solution via SVD [87]

✓eigenvalue decomposition [83]

SDP relaxation [1]

unbalanced Frob

relaxation-based methods [15]

✓

Newton-type methods [99], [33]

successive projection [105]

SVD-based OLSR method [107]

eigenvalue-based method [104]

SDP relaxation [28]

weighted
Frob

extension of standard [99], [41],

✓methods [42]

differential approach [24], [23]

l1 differential approach [97] ✓

l2, l∞ ✓

ObPP

standard
Frob

projection method [54]
✓

differential approach [96]

l1 separation of problem [98], [14] ✓

weighted
l1 differential approach [98] ✓

Frob, l2, l∞ ✓

SDPP
Frob

necessary and [6], [50],
✓

sufficient conditions [62]

l1, l∞, l2 ✓

proj. PP ✓

add.cons. ✓

Table 11: Solution methods for different types of Procrustes problems. Solution

methods for orthogonal (OPP), oblique (ObPP), semidefinite (SDPP) and projection (proj.PP)

Procrustes problems. The last column indicates classes covered by the proposed conic approach.

The shortcut "add.cons." means an arbitrary class of PPs with additional linear or semidefinite

constraints.

85

5.1 Orthogonal Procrustes problems

One of the most well-known subclasses of Procrustes problems is the class of orthogonal

Procrustes problems (OPPs), where the matrix variable is assumed to be orthogonal,

or at least having orthogonal columns (rows). OPPs are used to find an orthogonal

matrix that maps one set of data to fit another set of data, by means of a specific matrix

norm. OPPs have applications in various areas such as rigid body dynamics [12, 88],

psychometrics [87, 99], multidimensional scaling [25], or global positioning system [10].

Moreover, unbalanced OPPs map high dimensional data (with dimension m) into a space

with a lower dimension n << m. This applies, e.g. in the orthogonal least square

regression, which may be used for feature extraction [104, 107]. The weighted OPPs,

which involve a general matrix B, find applications in multivariate analysis [52].

A general orthogonal Procrustes problem is formulated as follows

min
X∈Rm×n

f(X) := ∥W ◦ (C − AXB)∥

XT X = In,
(85)

where A ∈ Rp×m, B ∈ Rn×q, W ∈ Rp×q and C ∈ Rp×q are the given data. Note that the

matrix variable X ∈ Rm×n is constrained to have orthogonal columns.

It is worth noting that the nonconvex quadratic constraint in (85) is commonly relaxed

by imposing the condition XT X ⪰ In. However, its equivalent reformulation is obtained

using Lemma 2.1, which states that

XT X = In ⇔ V =

 Im X

XT In

 ⪰ 0 ∧ rank(V) = m. (86)

Remark 1. Assuming standard OPPs with the Frobenius norm, the objective ∥C −AX∥F

can be rewritten as follows

∥C −AX∥F = tr
[
(C −AX)(C −AX)T

]
= tr(CCT)+ tr(AXXT AT)−2tr(CT AX). (87)

Since the first term is constant, the objective can be reduced to

tr(AXXT AT) − 2tr(CT AX). (88)

This feature is used in most of the existing solution methods, some of which are described

in the following subsection. Note that if m = n, we get a linear function that enables the

derivation of an explicit solution.

86

5.1.1 Known approaches for solving OPPs

The standard balanced OPP, where m = n, B = In and the goal is to find an orthogonal

matrix X that minimizes ∥C −AX∥F , was studied in [87]. It was shown that this problem

has a closed-form solution, which can be obtained by the singular value decomposition.

Specifically, the optimal solution X∗ is given by

X∗ = V UT (89)

where U and V are orthogonal matrices obtained from the singular value decomposition

of CT A. Subsequent publications have focused on accelerating the computation of the

solution. For example, in [83], a method based on eigenvalue decomposition is proposed

to speed up the computation of the solution of the standard balanced OPP.

Unlike standard balanced OPPs with the Frobenius norm in the objective, any other

subclass of PPs does not have a known closed-form solution. Therefore, it is necessary

to use specific minimization algorithms. In the following, we discuss the existing solution

methods for solving different subclasses of OPPs, which are also summarized in Table 11.

Several algorithms have been proposed to solve unbalanced OPPs on the Stiefel man-

ifold. One approach is to use relaxation-based iterations, as proposed in [15]. This

method involves relaxing the orthogonality constraint on X and solving a sequence of

relaxed subproblems iteratively until convergence is achieved. Another approach is to use

Newton-type iterations, as proposed in [33, 99], which involve using the Newton method

on manifold to update X in each iteration until a local optimum is reached. In addition to

iterative methods, necessary and sufficient conditions for local optimality in unbalanced

OPPs have been derived in [34]. These conditions provide insights into the properties of

optimal solutions and can be used to guide the development of optimization algorithms

for solving unbalanced OPPs.

The special case of unbalanced OPPs with n = 1 is known as the trust-region sub-

problem of the trust-region method in optimization [75]. This knowledge was used in

[105] to design the successive projection method, where all but one column of X are fixed,

and a trust-region subproblem is solved in each iteration. In [107], an iterative OLSR

algorithm, based on the use of singular value decompositions was introduced for solving

the orthogonal least square regression, which has shown effectiveness in practice. More

87

recently, in 2020, an eigenvalue-based approach was introduced in [104] that outperforms

the successive projection method from [105]. Specifically, the authors proposed an it-

erative algorithm based on the self-consistent-field (SCF) iteration, which is an efficient

method for solving eigenvector-dependent nonlinear eigenvalue problems.

Weighted OPPs are another interesting case, where A and B are general matrices

and the goal is to minimize ∥C − AXB∥F . Several algorithms have been developed for

solving these problems based on the extension of standard algorithms to the case of Stiefel

manifolds [99, 41, 42] and were demonstrated to be effective in computation. In addition,

in [24] and [23], an approach based on solving differential equations has been introduced

for weighted OPPs with the Frobenius norm in the objective. In [97], this approach was

extended to solve also weighted OPPs with the l1 norm in the objective. However, the

numerical experiments were executed only for a few small examples and the computation

time was not specified.

Previous attempts to solve OPPs using a conic optimization approach have been re-

ported in the literature, but they have been limited to standard OPPs with the Frobenius

norm in the objective. In [1], a relaxation-based approach was proposed for standard

balanced OPPs with potential data uncertainties. Another SDP relaxation was proposed

in [28] to handle standard unbalanced OPPs. In this work, the authors exploited the ob-

servation of Remark 1 and utilized vectorization to obtain the following SDP relaxation

for standard OPPs:

min
X∈Rm×n,Y ∈Sm

tr(AT AY) − 2tr(CT AX)In XT

X Y

 ⪰ 0,

 Im X

XT In

 ⪰ 0,

tr(Y) = n.

(90)

In contrast to the existing methods, our approach has several advantages. First, it can

handle both standard and weighted OPPs, which was not possible with earlier methods.

Moreover, it allows for various matrix norms in the objective, such as the l1 norm and

the spectral norm, making it useful for applications where outliers are present, such as

orthogonal least squares regression, as noted in [107]. In addition, our method can handle

88

additional linear and semidefinite constraints that may arise in problem formulation (1),

which is not possible with existing methods. However, it is important to note that our

approach may require more computation time compared to existing methods. This is

because our approach is designed to handle a wider class of PPs, rather than a specific

subclass and relies on solving conic problems. Despite this, the main advantage of our

approach is its ability to handle challenging subclasses of PPs, which we discuss in the

upcoming sections.

5.1.2 The proposed conic approach

In this subsection, we present reformulations of the general OPP (85) with respect to

different types of matrix norms in the objective.

After applying the statement of Lemma 2.1 to the general OPP (85), we rewrite the

nonconvex quadratic constraint on the orthogonality of the matrix variable as in (86) to

obtain this reformulation:

min
X∈Rm×n,V ∈Sm+n

f(X) := ∥W ◦ (C − AXB)∥

V =

 Im X

XT In

 ⪰ 0,

rank(V) = m.

(91)

If the objective of (91) is defined in terms of the Frobenius norm, we apply Proposition

2.5 to have

min
X∈Rm×n,V ∈Sm+n,Z∈Sp

tr(Z)

V =

 Im X

XT In

 ⪰ 0,

rank(V) = m, Iq (W ◦ (C − AXB))T

W ◦ (C − AXB) Z

 ⪰ 0.

(92)

89

In the case of the l1 norm in the objective of (91), using Proposition 2.2 we get

min
X∈Rm×n,V ∈Sm+n,t∈R,S∈Rp×q

t

V =

 Im X

XT In

 ⪰ 0,

rank(V) = m,

−S ≤ W ◦ (C − AXB) ≤ S,

ST 1p ≤ t1q.

(93)

If the objective of (91) contains the l∞ norm, we apply Proposition 2.3 to obtain

min
X∈Rm×n,V ∈Sm+n,t∈R,S∈Rp×q

t

V =

 Im X

XT In

 ⪰ 0,

rank(V) = m,

−S ≤ W ◦ (C − AXB) ≤ S,

S1q ≤ t1p.

(94)

If (91) involves the spectral norm, Proposition 2.4 provides the following reformulation

min
X∈Rm×n,V ∈Sm+n,s∈R

s

V =

 Im X

XT In

 ⪰ 0,

rank(V) = m, sIp W ◦ (C − AXB)

(W ◦ (C − AXB))T sIq

 ⪰ 0.

(95)

Note that regardless of the type of matrix norm being minimized, the general OPP (85)

can be reformulated as a rank-constrained SDP problem, which can be solved using al-

gorithms presented in Chapter 3. However, due to the unit diagonal of the block matrix

V ∈ Sm+n, rank of which is being constrained, the trace heuristic (39) is useless since it is

equivalent to the SDP relaxation (34). In addition, reformulating these rank-constrained

SDP problems into the standard form is not straightforward, making the rank reduction

algorithm (Algorithm 2) nontrivial to use. Hence, in the numerical part, we solve these

problems only using the SDP relaxation (34), the log-det heuristic (Algorithm 1), the con-

vex iteration (Algorithm 3), and the bisection algorithm (Algorithm 4) in their various

versions.

90

5.1.3 Numerical results

This section presents an overview of the numerical results obtained by solving different

types of OPPs. We first solve standard balanced and unbalanced OPPs with the Frobenius

norm in the objective, for which either an explicit solution or an effective solution method

is known, to demonstrate the correctness of the proposed conic approach. Next, we apply

the conic approach to solve weighted OPPs with various matrix norms in the objective,

including not only the Frobenius norm but also the l1 norm, l∞ norm, and the spectral

norm. Finally, we address OPPs with additional linear constraints.

In the experiments, we use two types of OPPs generation. In both, we first generate

an orthogonal matrix using the built-in function RandOrthMat from Matlab libraries. The

first type of generated problems has a zero optimal value. We randomly generate A and

B, and determine C such that the generated X solves the equation system C = AXB.

For this type of problem, we know the optimal value a priori, enabling us to evaluate the

accuracy of the solution. The second type of generated problems has an optimal value

slightly deviated from zero. We achieve this by generating a matrix ∆ ∈ Rp×q from N(0, 1)

and setting C = AXB + 0.5∆, as suggested in [24]. We distinguish between these two

types of generated problems in the tables by denoting f ∗ = 0 and f ∗ ̸= 0, respectively.

To assess the feasibility of the obtained solution X, we utilize the criterion ∥XT X − In∥F .

In all experiments, we apply the algorithms presented in Chapter 2 with the following

inputs: ε = 10−6, δ = 0.01, ρ = 10−6, and M = 10, unless specified otherwise.

5.1.3.1 Application - Evaluating the accuracy of an ancient map

Recall the assignment of Example 1.2. The task is to find an orthogonal matrix X ∈ R2×2,

a scaling factor ρ ∈ R and a translation vector d ∈ R2 to evaluate the accuracy of an

ancient map with respect to a modern map by solving a balanced OPP of the form (5).

We searched for the orthogonal transformation matrix X using both the explicit so-

lution based on the singular value decomposition (89), and our rank-constrained SDP

reformulation (92). In this case, the SDP relaxation of (92) was sufficient to find an

orthogonal solution

X∗ =

0.983 −0.182

0.182 0.983

 .

91

method ∥C − AX∥F ∥XXT − I∥F rank(Y) time

SVD 3867.2 7.83 × 10−16 2 0.01

SDP relaxation 3867.2 8.64 × 10−8 2 0.22

Table 12: Results for application – evaluating the accuracy of an ancient map.

Comparison of the explicit solution based on the SVD (89) and the SDP relaxation of (92) in

solving Example 1.2.

700 750 800 850 900 950 1000 1050 1100
300

350

400

450

500

550

600

650

700

750

800

Alve

Arro

Astl

Beck

Beng

Crad

Droi

Ecki
Eves

Hall

Hanb

Inkb

Kemp

Kidd

Mart

Stud

Tewk

UpSn

Upto

Worc

Figure 11: Transformed locations obtained as a result of solving Example 1.2. Trans-

formed ancient data (red) fitting modern data (black) from Example 1.2.

A comparison of these two approaches is summarized in Table 12. Despite the longer

computation time, the results obtained by the SDP relaxation correspond to the explicit

solution. We can easily verify that det(X∗) = 1 indicating that X∗ is a rotation matrix

of the form

X∗ =

 cos θ sin θ

− sin θ cos θ

 ,

where θ = 10.2◦. This angle represents the difference in orientation between the ancient

map and the modern map. Consequently, the transformation matrix X∗ is used to deter-

mine ρ∗ = 2.36 and d∗ = (502.67, 296.03)T using (7). The optimal value of (5), that is,

the value of ∥C − (12d
T + ρAX)∥F , is 44.56, which denotes the sum of all absolute devia-

tions between locations. Comparing this value with the value of ∥C − AX∥F in Table 12,

we can conclude that translation and scaling significantly improved the fit of the data.

92

explicit semidefinite desired

solution relaxation value

∥C − AX∥F 3.222e-13 2.9427e-05 0

∥XT X − In∥F 1.8128e-15 1.4927e-06 0

rank(V) 5 5 5

time (sec) 0.00003 0.43271

Table 13: Solving standard balanced OPPs with the Frobenius norm in the ob-

jective. Results for 100 generated standard balanced OPPs with the Frobenius norm in the

objective, including average values of the criteria for optimality and orthogonality, rank of the

block matrix V , computation time, and desired value for each criterion.

In Figure 11, black-dot locations from the modern map are fitted with our transformed

red-dot ancient data. These results confirm a quite high accuracy of the ancient map and

the correctness of the proposed reformulation (92).

5.1.3.2 Standard balanced OPPs with the Frobenius norm and the spectral

norm in the objective

Although in the previous application, the solution found by the SDP relaxation (92)

corresponded to the explicit optimal solution (89), we aim to compare these methods also

for 100 generated standard balanced OPPs of different sizes with the optimal value equal

to zero. After that, we will observe changes in optimal values, values of the orthogonality

criterion, and computation time obtained for 100 generated standard balanced OPPs with

the spectral norm in the objective.

In Table 13, we provide a summary of the results obtained by comparing the SDP

relaxation of (92) with the explicit solution based on the singular value decomposition

(89). The first row of the table confirms that the average reached optimal value equals zero

within the specified tolerance, indicating the ε-optimality of the solutions. The second

row demonstrates that the found solutions are orthogonal, providing rank(V) equal to

the desired value of m = 5.

93

p\n 5 10 15 20

25 2.6251e-09 1.2566e-10 1.3090e-09 7.5200e-10

50 2.4351e-09 2.0353e-10 3.9213e-10 1.0291e-09

75 1.9186e-09 1.6807e-10 2.9516e-10 1.7583e-10

100 1.9322e-09 1.5407e-10 2.7570e-10 1.9705e-09

Table 14: Accuracy of the optimal values of balanced OPPs with the spectral norm

in the objective. Average values of the objective function ∥C − AX∥2 obtained by the SDP

relaxation of (95) applied to 100 generated balanced OPPs with the spectral norm in the objec-

tive for different values of p and n.

p\n 5 10 15 20

25 2.4643e-10 2.1996e-11 3.5808e-10 3.8831e-10

50 1.5312e-10 2.0211e-11 5.3254e-11 1.8592e-10

75 9.7703e-11 1.3033e-11 2.9904e-11 2.2719e-11

100 8.6725e-11 1.0144e-11 2.3278e-11 2.1241e-10

Table 15: Accuracy of orthogonal solutions of balanced OPPs with the spectral

norm in the objective. Average values of the orthogonality criterion ∥XT X − In∥F obtained

by the SDP relaxation of (95) applied to 100 generated balanced OPPs with the spectral norm

in the objective for different values of p and n.

Figure 12: Average computation time for balanced OPPs with the spectral norm.

Average computation time (in seconds) of the SDP relaxation applied to solve 100 generated

balanced OPPs with the spectral norm in the objective for different values of p and n.

94

Although the computation time for finding the explicit solution is naturally lower

compared to the SDP relaxation of (92), it is irrelevant for our purposes, as we are

only evaluating the correctness of the proposed conic approach. The experiments were

performed with a specified tolerance ε = 10−6. However, if a more accurate solution is

required, the SDP relaxation can be improved using modified methods and rank reduction

algorithms presented in Section 3.2.

We conducted numerical experiments to investigate the impact of changing the number

of rows of C ∈ Rp×n and X ∈ Rn×n in standard balanced OPPs with the spectral norm

in the objective. For each combination of p and n, we generated 100 problems, and the

results are presented in Table 14 and Table 15. The tables demonstrate that the SDP

relaxation of (95) provided an optimal solution for all generated problems of this type,

with a chosen tolerance ε = 10−6. Additionally, we analyzed the behavior of computation

time with respect to the parameters p and n, as shown in Figure 12.

5.1.3.3 Application - Feature extraction

Consider the assignment of Example 1.3, where we have provided a detailed description of

the Yalefaces data set, consisting of p = 165 images with m = 256 features corresponding

to n = 15 individuals. The objective is to extract features from this data set using the

orthogonal least squares regression, that is, solving an unbalanced OPP of the form

min
X∈R256×15

∥C − AX∥F

XT X = In,
(9)

where C ∈ R165×15 and A ∈ R165×256.

To solve this problem, we used a method introduced in [107], called OLSR which

involves iteratively performing singular value decompositions6. Our aim is to assess the

accuracy of the proposed rank-constrained SDP reformulation (92) by comparing our

results with those obtained by the OLSR algorithm.

Table 16 presents a comparison between the results obtained by the OLSR algorithm

[107] and the proposed conic approach for solving (9) applied to extract features from the

Yalefaces data set. Initially, we applied the SDP relaxation of (92) to solve (9). However,

6Scripted algorithm accessible on the website https://github.com/StevenWangNPU/OLSR_NC2016.

95

https://github.com/StevenWangNPU/OLSR_NC2016

norm criterion OLSR SDP relaxation modified log-det heuristic

Frobenius

∥C − AX∥F 2.9571 2.9570 2.9570

∥XT X − In∥F 4.3586e-15 1.0000 1.1725e-08

rank(V) 256 258 256

time (s) 0.4719 817.6205 1534.89

l1

∥C − AX∥1 x 7.2534 7.2534

∥XT X − In∥F x 0.3560 1.6922e-9

rank(V) x 270 256

time (s) x 51.58 106.2779

Table 16: Results for application – feature extraction. Results of the unbalanced OPP

(10) applied to solve the orthogonal least squares regression using the Yalefaces data set, intro-

duced in Example 1.3. Comparison of the OLSR algorithm [107], the SDP relaxation of (92),

and the modified log-det heuristic (Algorithm 1 with (70)) applied to find a rank-256 solution

among optimal solutions of the SDP relaxation.

the table shows that the SDP relaxation was unable to find an orthogonal solution. This

is because of the ε-rank of the solution V that is higher than the desired value m = 256.

Since we were tasked with finding an orthogonal solution, we used the modified log-

det heuristic (Algorithm 1 with (70)) to search for a rank-m solution among the optimal

solutions of the SDP relaxation. As shown in Table 16, the modified log-det heuristic was

successful in finding such a solution. This solution provided the same optimal value as the

SDP relaxation, which was even slightly lower than the one yielded by the solution of the

OLSR algorithm from [107]. However, the orthogonality criterion was a bit less accurate,

which could be improved by choosing a stricter value of ε for the stopping criterion of

Algorithm 1.

As for the computation time, the SDP approach cannot compete with the OLSR

algorithm [107], as its computation time is more than 1000 times worse, which is caused

by the fact that the SDP approach relies on solving SDP problems of large size (p = 165,

m = 256, and n = 15). On the other hand, the Frobenius norm is sensitive to outliers and

hence the l1 norm is more suitable for this kind of application, as stated in [107]. However,

the available methods for solving (9) with the l1 norm in the objective are limited to those

96

based on differential equations, as indicated in Table 11. Therefore, the proposed conic

approach can be applied there and even its computation time for solving (9) with the

l1 norm is much better since handling a lower number of variables in reformulation (93).

5.1.3.4 Standard unbalanced OPPs with the Frobenius norm in the objective

In this set of experiments, we focus on solving standard unbalanced OPPs with the Frobe-

nius norm in the objective. This subclass of OPPs is chosen to enable a comparison of the

proposed rank-constrained SDP reformulation (92) with existing approaches developed

specifically for this type of OPPs. Namely, we use the OLSR algorithm from [107] that

was employed also in the previous subsection, and the SDP relaxation of the form (90)

proposed in [28], which was discussed in Subsection 5.1.1.

Table 17 compares the results obtained by the existing methods and the proposed

conic approach in solving standard unbalanced OPPs of the form (85) with the Frobenius

norm in the objective, where B = In, m = 5, n = 3, p = 30, q = n. The problems for the

first two columns were generated with a zero optimal value (f ∗ = 0), and the problems

for the last two columns were generated with a nonzero optimal value (f ∗ ̸= 0).

The results presented in Table 17 demonstrate that the OLSR algorithm [107] is highly

efficient and consistently produces solutions that satisfy the orthogonality criterion with

a high precision. However, the optimal value obtained by this method is generally higher

than the ones obtained by the other methods. On the other hand, the SDP relaxation

(90) from [28] yielded slightly better numerical results than the SDP relaxation of the

proposed reformulation (92), as evidenced by the average rank of V , the average values

of the orthogonality criterion, and the values of empirical ε. However, the advantage of

the proposed conic approach lies in its ability to enhance a solution of the SDP relaxation

by reducing its rank. To achieve this, we applied the proposed bisection algorithm (Algo-

rithm 4) in its log-det and convex iteration versions. Both versions succeeded in finding

a rank-m solution, although it came at the expense of computation time, as demonstrated

by results in Table 17.

In summary, the OLSR algorithm [107] is the best option for finding a feasible solution

to the standard unbalanced OPP. If one requires an optimal solution, the SDP relaxation

(90) from [28] provides a good balance between solution quality and computation time.

97

method criterion
f ∗ = 0 f ∗ ̸= 0

(10,3,20) (15,5,20) (10,3,20) (15,5,20)

OLSR

algorithm

from [107]

∥C − AX∥F 4.2345e-01 1.1607e-01 7.3917 11.6977

∥XT X − In∥F 1.3581e-15 2.0473e-15 1.5734e-15 2.1533e-15

rank(V) 10 15 10 15

time (s) 0.0015 0.0034 0.0033 0.0057

empirical ε 1.3771e-15 1.6864e-15 1.5477e-15 1.5603e-15

SDP

relaxation

(90) from [28]

∥C − AX∥F 2.6592e-04 3.1659e-04 3.0475 3.1981

∥XT X − In∥F 1.1943e-08 2.3035e-07 4.0761e-08 1.6570e-03

rank(V) 10 15.02 10.90 15.18

time (s) 0.2063 0.2184 0.2501 0.2690

empirical ε 9.8172e-09 1.3052e-06 3.8028e-07 3.6943e-02

proposed SDP

relaxation

of (92)

∥C − AX∥F 2.1963e-05 2.0107e-05 2.9164 2.9757

∥XT X − In∥F 1.5452e-06 2.1261e-06 5.5630e-02 1.0713e-01

rank(V) 10.05 15.21 12.42 17.26

time (s) 0.3623 0.5448 0.4047 0.5090

empirical ε 1.2587e-06 2.7242e-06 6.7747e-02 1.2386e-01

bisection alg.

(log-det heu.)

for (92)

∥C − AX∥F 1.4094e-07 8.1656e-08 3.0212 3.2049

∥XT X − In∥F 1.4094e-07 8.1656e-08 1.6072e-06 1.2667e-06

rank(V) 10 15 10 15

time (s) 34.54 51.43 54.28 85.95

bisection alg.

(convex iter.)

for (92)

∥C − AX∥F 2.9968e-06 3.2103e-07 2.9876 3.2053

∥XT X − In∥F 1.0383e-06 8.6009e-07 1.9979e-06 1.9879e-06

rank(V) 10 15 10 15

time (s) 132.36 159.98 123.29 164.33

Table 17: Comparison of the existing methods and the proposed conic approach

in solving standard unbalanced OPPs with the Frobenius norm in the objective.

Average values of optimal value, orthogonality criterion, rank of the block matrix V , computa-

tion time and maximum value of empirical ε obtained by the OLSR algorithm [107], the SDP

relaxation [28], the proposed SDP relaxation of (92) and the bisection algorithm (Algorithm 4).

Averages counted for 50 generated problems of size (m, n, p) with optimal value f∗.

98

If computation time is not a concern, the proposed bisection algorithm (Algorithm 4)

applied to solve the rank-constrained SDP reformulation of the unbalanced OPP in the

form (92) can provide an orthogonal solution with a lower objective value than other

approaches, that is, a better approximation of the optimal solution.

5.1.3.5 Weighted OPPs with the Frobenius norm, l1 norm, l∞ norm and

spectral norm in the objective

This subsection focuses on weighted OPPs of the form (85), where A and B are general

matrices not equal to the identity. In order to demonstrate the versatility of the proposed

conic approach, we applied it to solve weighted OPPs that use different types of matrix

norms to define the objective of (85). In the following sets of experiments, we focus on

weighted OPPs with the parameters p = 10, m = 4, n = 4, and q = 3. For each of the

considered matrix norms, including the Frobenius norm, l1 norm, l∞ norm, and spectral

norm, we generated 50 problems with a zero optimal value (f ∗ = 0) and 50 problems with

a nonzero optimal value (f ∗ ̸= 0), as described in the introduction to numerical results.

It is important to note that the methods discussed in the previous subsection cannot

be utilized in this case, as they rely on the specific structure of unbalanced problems

where B equals identity and the definition of the Frobenius norm. As displayed in Table

11, if the objective of the weighted OPP is defined in terms of Frobenius norm, they

can be solved by several algorithms derived on the Stiefel manifold, such as the spectral

projected gradient method [96, 41], which was experimentally demonstrated to be very

effective. For the case of l1 norm in the objective, a differential approach was proposed

in [97]. However, the performance of such an approach was illustrated only on small

examples, and the authors labeled this approach to be time-consuming since using built-

in Matlab functions for ODE calculations. Regarding the l2 norm and l∞ norm in the

objective of (85), there are no significant results in the literature (compare to Table 11).

Table 18 summarizes the results obtained by applying the conic approach to solve

weighted OPPs (85) with the Frobenius norm in the objective. The first part of the table

shows the performance of the SDP relaxation of the rank-constrained SDP reformula-

tion (92). According to the orthogonality criterion, none of the 100 generated problems

achieved a rank-4 solution. Therefore, rank reduction algorithms were applied, the results

99

method criterion
(m,n,p,q) = (10,4,4,3)

f ∗ = 0 f ∗ ̸= 0

SDP

relaxation

∥C − AXB∥F 2.4501e-05 2.2556

∥XT X − In∥F 1.0000 1.0835

rank(V) 7.96 6.28

time (s) 0.3188 0.2642

(γ) (α) bisection

log-det

heuristic

∥C − AXB∥F 9.8639e-06 2.4110 2.3726

∥XT X − In∥F 1.6141e-07 4.4423e-07 1.9947e-06

rank(V) 4 4 4

time (s) 1.0890 0.8495 47.5041

convex

iteration

∥C − AXB∥F 8.6404e-07 2.3420 2.3379

∥XT X − In∥F 1.9869e-07 1.2403e-07 1.4682e-06

rank(V) 4 4 4

time (s) 1.4467 1.2530 93.9932

Table 18: Solving weighted OPPs with the Frobenius norm in the objective. Average

values of optimal value, orthogonality criterion, rank of the block matrix V , and computation

time obtained by the SDP relaxation of (92), the modified versions of algorithms, labeled (γ),

the bi-criterion versions of algorithms, labeled as (α) and the bisection algorithm (Algorithm 4)

in solving 100 generated weighted OPPs with the Frobenius norm in the objective of the size

(m, n, p, q) with optimal value f∗.

of which are presented in the second part of the table. For problems with a zero optimal

value, both the modified versions of the log-det heuristic (Algorithm 1 with (70)) and the

convex iteration (Algorithm 3 with (71)) successfully found rank-4 solutions among the

optimal solutions of the SDP relaxation for all generated cases.

On the other hand, when solving problems with a nonzero optimal value, the modi-

fied versions of the algorithms did not produce solutions of the desired rank. Therefore,

we applied the bi-criterion versions of the log-det heuristic (Algorithm 1 with (65)) and

the convex iteration (Algorithm 3 with (66)) with α = 10, results of which are seen

in column (α) in Table 18. The obtained rank-4 solutions served as inputs for the bi-

100

method criterion
(m,n,p,q)=(10,4,4,3)

f ∗ = 0 f ∗ ̸= 0

SDP

relaxation

∥C − AXB∥1 6.8561e-10 3.6718 (3.9190/3.5203)

∥XT X − In∥F 1.0000 1.0865 (1.0519/1.1078)

rank(V) 5 7.02 (6.84/7.12)

time (s) 0.2306 0.2489 (0.2464/0.2505)

(γ) (100%) (γ) (38%) (α) (62%) bisection (62%)

log-det

heuristic

∥C − AXB∥1 3.9190 3.7857 4.3477 3.8258

∥XT X − In∥F 9.0840e-08 1.0897e-07 8.1745e-08 1.4246e-06

rank(V) 4 4 4 4

time (s) 0.7324 0.7364 0.6843 40.6750

convex

iteration

∥C − AXB∥1 4.9138e-10 3.9190 3.9067 3.7817

∥XT X − In∥F 2.2343e-09 5.6597e-09 2.3512e-09 1.4875e-06

rank(V) 4 4 4 4

time (s) 0.9686 1.0110 1.1724 84.4602

Table 19: Solving weighted OPPs with the l1 norm in the objective. Average values

of optimal value, orthogonality criterion, rank of the block matrix V , and computation time

obtained by the SDP relaxation of (95), the modified versions of algorithms, labeled (γ), the

bi-criterion versions of algorithms, labeled as (α) and the bisection algorithm (Algorithm 4) in

solving 100 generated weighted OPPs with the l1 norm in the objective of size (m, n, p, q) with

optimal value f∗.

section algorithm (Algorithm 4), which provided solutions of the rank-constrained SDP

reformulation (92) providing slightly better objective value than the bi-criterion methods

themselves.

An analogical procedure was used also to solve weighted OPPs (85) with the l1 norm

in the objective. Results of the executed experiments are summarized in Table 19. Similar

to the previous experiments with the Frobenius norm, the SDP relaxation of the rank-

constrained SDP reformulation (93) failed to find an orthogonal solution. However, the

modified log-det heuristic (Algorithm 1 with (70)) and the modified convex iteration

(Algorithm 3 with (71)) succeeded in producing a rank-4 optimal solution of the SDP

101

method criterion
(m,n,p,q)=(10,4,4,3)

f ∗ = 0 f ∗ ̸= 0

SDP

relaxation

∥C − AXB∥2 1.8778e-09 1.7020 (1.7020/1.7020)

∥XT X − In∥F 1.0000 1.1803 (1.1783/1.1823)

rank(V) 5 7.38 (7/7.76)

time (s) 0.2360 0.2807 (0.2977/0.2637)

(γ) (100%) (γ) (50%) (α) (50%) bisection (50%)

log-det

heuristic

∥C − AXB∥2 8.6712e-10 1.7020 1.8577 1.7955

∥XT X − In∥F 6.4882e-08 3.6070e-08 7.4676e-08 1.4419e-06

rank(V) 4 4 4 4

time (s) 0.7805 0.7837 0.7072 32.6941

convex

iteration

∥C − AXB∥2 7.2729e-11 1.7020 1.8212 1.7951

∥XT X − In∥F 2.9138e-08 6.4836e-09 7.9518e-09 1.5579e-06

rank(V) 4 4 4 4

time (s) 1.0054 1.0261 1.1851 76.4913

Table 20: Solving weighted OPPs with the spectral norm in the objective. Average

values of optimal value, orthogonality criterion, rank of the block matrix V , and computation

time obtained by the SDP relaxation of (95), the modified versions of algorithms, labeled (γ), the

bi-criterion versions of algorithms, labeled as (α) and the bisection algorithm (Algorithm 4) in

solving 100 generated weighted OPPs with the spectral norm in the objective of size (m, n, p, q)

with optimal value f∗.

relaxation for all generated problems with a zero optimal value. In contrast to the previous

experiments, the modified versions of the algorithms provided a rank-4 solution also in

38% of the generated problems with nonzero optimal value, as seen in column (γ). For the

remaining 68% of problems, we used the bi-criterion versions of the algorithms to initialize

the bisection algorithm (Algorithm 4) with the obtained rank-4 solutions. As a result,

we obtained orthogonal solutions yielding a lower objective value than the bi-criterion

versions of the algorithms (see columns (α) and bisection).

Table 20 presents the results for weighted OPPs with the spectral norm in the objec-

tive. In this case, the rank-constrained SDP reformulation takes the form (95). Similar

102

method criterion
(m,n,p,q)=(10,4,4,3)

f ∗ = 0 f ∗ ̸= 0

SDP

relaxation

∥C − AXB∥2 8.2965e-10 1.3773 (1.4607/1.3614)

∥XT X − In∥F 1.0000 1.1161 (1.0582/1.1271)

rank(V) 5 6.76 (6.38/6.83)

time (s) 0.2498 0.2421 (0.2362/0.2432)

(γ) (100%) (γ) (16%) (α) (84%) bisection (84%)

log-det

heuristic

∥C − AXB∥2 2.5135e-9 1.4607 1.8713 1.4894

∥XT X − In∥F 1.2462e-8 5.3399e-7 6.1945e-8 1.5966e-6

rank(V) 4 4 4 4

time (s) 0.7022 0.7158 0.6863 38.0758

convex

iteration

∥C − AXB∥2 5.3009e-10 1.4711 1.5983 1.4719

∥XT X − In∥F 2.0831e-9 2.3399e-9 1.9335e-9 1.1707e-6

rank(V) 4 4 4 4

time (s) 0.9691 0.9559 0.9473 72.5916

Table 21: Solving weighted OPPs with the l∞ norm in the objective. Average values

of optimal value, orthogonality criterion, rank of the block matrix V , and computation time

obtained by the SDP relaxation of (94), the modified versions of algorithms, labeled (γ), the

bi-criterion versions of algorithms, labeled as (α) and the bisection algorithm (Algorithm 4) in

solving 100 generated weighted OPPs with the l∞ norm in the objective of size (m, n, p, q) with

optimal value f∗.

to the previous cases, the SDP relaxation did not provide an orthogonal solution and the

modified log-det heuristic (Algorithm 1 with (70)) and the modified convex iteration (Al-

gorithm 3 with (71)) were able to find an orthogonal solution among the optimal solutions

of the SDP relaxation of (95) for all 50 generated problems with a zero optimal value,

within a certain tolerance. For problems with a nonzero optimal value, the modified ver-

sions of the algorithms yielded rank-4 solutions for 50% of the generated problems, the

results of which are summarized in column (γ). For the other 50% of problems, rank-4

solutions were obtained by the bi-criterion versions of the algorithms (see column (α)),

which were then enhanced by the bisection algorithm (Algorithm 4).

103

The results for solving the weighted OPP (85) with the l∞ norm in the objective are

presented in Table 21 and can be interpreted similarly to the previous cases. In this case,

we used the rank-constrained SDP reformulation of the form (94).

To summarize, the results presented in Table 18, Table 19, Table 20, and Table 21

demonstrate the performance of the proposed conic approach in solving weighted OPPs

with various types of matrix norms in the objective. The results revealed that the modified

version of the log-det algorithm (Algorithm 1 with (70)) and the modified version of the

convex iteration (Algorithm 3 with (71)) were successful in finding low-rank solutions

among optimal solutions of the SDP relaxation in cases where the optimal value was zero.

This indicates that the conic approach may be suitable for finding orthogonal matrices that

satisfy a linear system of equations. Since the bi-criterion log-det algorithm (Algorithm 1

with (65)) and the bi-criterion version of the convex iteration (Algorithm 3 with (66))

provided a tight interval for the bisection algorithm (Algorithm 4), we observe only slight

improvements of the optimal value. We are aware that the computation time cannot

compete with algorithms for solving weighted OPPs with the Frobenius norm. However,

it can serve as an alternative to the differential approach [97], which is considered to

be also time-consuming and what is the most important, it provides a tool for solving

weighted OPPs with the l2 norm and l∞ norm, which are not covered by the existing

approaches.

5.1.3.6 Balanced OPPs with additional linear constraints

As mentioned in the introduction of this chapter, the proposed conic approach is appli-

cable to Procrustes problems with additional linear constraints presented in the problem

formulation (85). An interesting example of such a problem is finding a permutation

matrix that minimizes the objective of the standard balanced OPP (85), involving the

Frobenius norm or the l1 norm. A permutation matrix is a doubly stochastic matrix hav-

ing nonnegative binary entries (0 or 1) with rows and columns summing to 1. Although

the problem of finding such a matrix is an integer program, we use that a permutation

matrix can be represented as an orthogonal matrix with nonnegative elements. There-

fore, the standard balanced OPP with additional linear constraints representing finding

104

a permutation matrix can be formulated as follows

min
X∈Rn×n

∥C − AX∥

XT X = In

Xij ≥ 0, ∀i, j = 1, ..., n.

(96)

In the following set of experiments, we solve the OPP with the additional linear

constraints of the form (96) generated for a random permutation matrix of size n. We

focus on problems with a zero optimal value, which enables interpreting (96) as the

problem of finding a permutation matrix that satisfies a linear system of equations.

Table 22 presents the results for using the Frobenius norm, while Table 23 shows

the results for using the l1 norm in the objective of (96). It is worth noting that the

additional linear constraints can be easily incorporated into the rank-constrained SDP

reformulation (92) for the Frobenius norm and (93) for the l1 norm. In the following

experiments, we generated problems of three different sizes with zero optimal values and

solved them using the SDP relaxation of (92) and (93), respectively. Table 22 shows the

optimality and orthogonality of the obtained solutions. For the l1 norm, a rank-n solution

was obtained in all cases. It was observed that even in cases where a rank-n solution was

not obtained, the values of the empirical ε and the orthogonality criterion suggest that

the lack of a rank-n solution was due to the strict value of ε.

We test the feasibility of the solutions of (96) using several criteria. The first pair of

criteria, ∥X1n − 1n∥1 and ∥XT 1n − 1n∥1, verifies whether the row and column sums of

the solution matrix X equal 1. The third criterion, ∥omax − 1n∥1, where omax is a vector

of the n largest elements of X, checks if the solution has exactly n elements equal to 1.

Finally, the fourth criterion, ∥zmin−0n(n−1)∥1, where zmin is the vector of n(n−1) smallest

elements of X, verifies if the solution has exactly n(n − 1) elements equal to 0.

To conclude, the proposed conic approach was successful in solving OPPs with addi-

tional linear constraints. Moreover, it was observed that the l1 norm is more effective in

handling matrices with many zero elements, which is the case of permutation matrices.

105

criterion \ (m,n,p) (3,3,10) (5,5,20) (10,10,30)

∥C − AX∥F 3.3660e-5 4.9711e-5 5.2977e-10

∥XT X − In∥F 2.6449e-6 2.7031e-6 2.3347e-11

rank(V) 3.59 5.49 10

of rank(V) > m 52 14 0

∥X1n − 1n∥1 1.7330e-9 1.1840e-8 3.8232e-13

∥XT 1n − 1n∥1 2.8542e-9 1.1274e-8 1.8038e-13

∥omax − 1n∥1 1.8478e-6 2.6850e-6 3.4809e-11

∥zmin − 0n(n−1)∥1 1.8462e-6 2.6831e-6 3.4809e-11

time (s) 0.2150 0.3743 1.1181

empirical ε 2.0240e-6 2.0534e-6 1.4831e-11

Table 22: Solving standard balanced OPPs with the Frobenius norm in the objective

and additional linear constraints. Results obtained by the SDP relaxation in solving 100

generated OPPs representing problems of finding permutation matrices minimizing the objective.

criterion \ (m,n,p) (3,3,10) (5,5,20) (10,10,30)

∥C − AX∥1 3.0607e-10 4.4304e-10 5.2880e-10

∥XT X − In∥F 2.3621e-11 2.4869e-11 2.3348e-11

rank(V) 3 5 10

of rank(V) > m 0 0 0

∥X1n − 1n∥1 4.1927e-12 7.6000e-13 3.8232e-13

∥XT 1n − 1n∥1 4.1299r-12 8.3364e-13 1.8042e-13

∥omax − 1n∥1 1.4740e-11 2.4448e-11 3.4865e-11

∥zmin − 0n(n−1)∥1 1.8849e-11 2.5154e-11 3.4811e-11

time (s) 0.1598 0.2892 0.5307

empirical ε 3.6912e-11 2.2944e-11 1.4833e-11

Table 23: Solving standard balanced OPPs with the l1 norm and additional linear

constraints. Results obtained by the SDP relaxation in solving 100 generated OPPs represent-

ing problems of finding permutation matrices minimizing the objective.

106

5.1.3.7 Extension - Graph isomorphism problem as a two-sided OPP

This subsection describes the graph isomorphism problem and its formulation as a special

type of OPP, known as a two-sided OPP (see [54]). We also introduce the proposed conic

approach to solve this problem and provide solutions for four different graph isomorphism

problems of different sizes.

It is known that a graph is a set of vertices connected by edges. Determining if two

graphs are isomorphic or not is important in various fields such as chemistry, computer sci-

ence, and data mining. For the sake of simplicity, we only consider unweighted undirected

graphs.

Definition 5.1 ([48]). An isomorphism of two graphs G and G̃ is a bijection between the

vertex sets of G and G̃:

f : V (G) → V (G̃) (97)

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v)

are adjacent in G̃.

To put it simply, according to Definition 5.1, two graphs are isomorphic if the vertices

are tied to edges, and we can obtain the second graph only by moving the vertices of the

first graph, as shown in Figure 13.

Figure 13: Example of isomorphic graphs.

We can label the n vertices of a simple graph as 1, 2, ..., n. The graph can then be

defined by its adjacency matrix A ∈ Rn×n, where each element Aij ∈ {0, 1} indicates

whether vertices i and j are adjacent or not. This definition can be extended to weighted

graphs as well. Graph isomorphism can be determined using the adjacency matrices as

stated in Definition 5.2.

107

Definition 5.2 ([92]). Graphs G and G̃ are isomorphic if and only if there is a permuta-

tion matrix P ∈ Rn×n that satisfies

PA = ÃP. (98)

It means that an isomorphic graph is created by permuting rows and columns of the

adjacency matrix of the original graph in the same order. Note that Definition 5.2 is

equivalent to Definition 5.1.

As in [92], consider two finite unweigted undirected graphs with n vertices labeled

1, 2, ..., n and described by their adjacency matrices A, Ã ∈ Sn. The task of the graph

isomorphism problem is to determine whether the two given graphs are isomorphic, mean-

ing that there exists a permutation that satisfies (98), and to find such a permutation

P ∈ Rn×n if it exists. Unlike [92], we do not represent a permutation matrix as a matrix

having unit sums of rows and columns and elements equal to 0 or 1 since such a problem

is an integer problem where relaxations need to be applied leading to a solution having

non-integer elements and rounding algorithms have to be tailored to get a permutation

matrix. To avoid this, we rather represent the permutation matrix as an orthogonal ma-

trix having nonnegative elements. Consequently, the graph isomorphism problem can be

formulated as a so-called two-sided OPP (see [54]) of the following form

min
P ∈Rn×n

∥PA − ÃP∥1

P T P = In

Pij ≥ 0 ∀i, j = 1, ..., n.

(99)

In [40], the graph isomorphism problem (99) is formulated with the Frobenius norm in

the objective. However, as demonstrated in the previous subsection, the l1 norm is more

suitable for handling matrices with a large number of zero elements, therefore it denotes

our preference. The constraints of (99) define the set of permutation matrices P ∈ Rn×n.

Note that the objective function of (99) fits the formulation of a general norm mini-

mization problem (21), therefore it can be rewritten according to Proposition 2.2. Fur-

thermore, the first constraint of (99) is the orthogonality constraint, which can be rewrit-

ten as in (86). By implementing these modifications, we can obtain the following rank-

108

constrained SDP reformulation

min
P ∈Rn×n,t∈R,S∈Rn×n,V ∈S2n

t

−S ≤ PA − ÃP ≤ S,

ST 1n ≤ t1n,

Pij ≥ 0, ∀i, j = 1, ..., n.

V =

In P T

P In

 ⪰ 0,

rank(V) = n.

(100)

The problem (100) can be tackled using the techniques presented in Section 2. Fur-

thermore, we can exploit the fact that two graphs represented by their adjacency matrices

A and Ã are isomorphic if and only if P is a feasible solution of (99) with a zero opti-

mal value. Therefore, in our numerical experiments, we solve the rank-constrained SDP

problem (100) using the SDP relaxation, the modified versions of the log-det heuristic

(Algorithm 1 with (70)), and the convex iteration (Algorithm 3 with (71)), where γ

is a small positive constant. We use four pairs of adjacency matrices of different sizes

n ∈ {4, 6, 16, 25} that represent pairs of isomorphic graphs, and we search for a permuta-

tion matrix that satisfies (98). The results are summarized in Table 24.

The results in Table 24 demonstrate that the SDP relaxation of (100) provided optimal

solutions of higher rank than expected, with optimal values greater than zero. In contrast,

the modified log-det heuristic and the modified convex iteration produced solutions for

(100) that satisfy the conditions listed in the table, which confirms both their feasibility

and ε-optimality. Since these solutions are permutation matrices, they can be considered

optimal solutions for the graph isomorphism problem (99).

5.2 Oblique Procrustes problems

Procrustes problems defined over a feasible set given by quadratic constraints of the

form diag(XT X) = 1n are referred to as the oblique Procrustes problems (ObPPs). It

is common to consider the Frobenius norm (see [54, 96]) or the l1 norm in the objective

(see [98, 14]). ObPPs arise in various applications such as factor analysis [76] and shape

analysis [30]. The ObPPs with a partially specified target and weighted ObPPs are also

discussed in [98].

109

method criterion n=4 n=6 n=16 n=25

SDP

relaxation

∥PA − ÃP∥1 2 3.5187 6.0017 0.8683

∥P T P − In∥F 1.7321 1.5643 2.4076 3.7997

rank(V) 7 11 31 49

∥P1n − 1n∥1 7.2384e-11 1.4627e-11 1.1875e-10 2.0370e-12

∥P T 1n − 1n∥1 7.2384e-11 1.4627e-11 1.1875e-10 2.0367e-12

∥omax − 1n∥1 3 2.6188 5.8639 13.8898

∥zmin − 0n(n−1)∥1 3 2.6188 5.8639 13.8898

time (s) 0.2473 0.2827 0.8153 1.9829

empirical ε 0.4896 0.5958 1.6218 3.9723

modified

log-det

heuristic

(γ = ε)

∥PA − ÃP∥1 1.5560e-15 4.2576e-13 1.2472e-13 7.6111e-7

∥P T P − In∥F 8.7483e-12 1.4113e-7 1.2744e-7 6.1667e-6

rank(V) 4 6 16 25

∥P1n − 1n∥1 7.0166e-13 1.3124e-12 5.5889e-10 9.6092e-9

∥P T 1n − 1n∥1 7.0166e-13 1.3096e-12 5.5889e-10 9.6092e-9

∥omax − 1n∥1 7.3948e-12 7.0571e-8 2.072e-7 1.4358e-5

∥zmin − 0n(n−1)∥1 8.0964e-12 7.0570e-8 2.0716e-7 1.4348e-5

time (s) 0.4896 0.5958 1.6218 3.9723

empirical ε 2.5248e-12 7.0564e-8 2.5362e-8 9.3755e-7

modified

convex

iteration

(γ = ε)

∥PA − ÃP∥1 3.7889e-16 2.4484e-14 7.1029e-15 4.6085e-15

∥P T P − In∥F 5.1683e-8 1.2035e-9 4.4462e-9 4.4291e-8

rank(V) 4 6 16 25

∥P1n − 1n∥1 4.6035e-11 1.7152e-12 1.9921e-10 1.0913e-9

∥P T 1n − 1n∥1 4.6036e-11 1.7154e-12 1.9921e-10 1.0913e-9

∥omax − 1n∥1 4.4882e-9 1.0254e-9 8.5908e-9 1.0850e-7

∥zmin − 0n(n−1)∥1 4.4422e-9 1.0247e-9 8.3916e-9 1.0744e-7

time (s) 0.5332 0.7158 3.4213 11.5446

empirical ε 1.4922e-9 4.3997e-10 7.2807e-10 4.5204e-9

Table 24: Solving the graph isomorphism problem. Results obtained by the SDP relax-

ation, the modified log-det heuristic (Algorithm 1 with (70)) and the modified convex iteration

(Algorithm 3 with (71)) for γ = 10−6 in solving two-sided OPPs of the form (100).

110

In general, the ObPP can be formulated as follows

min
X∈Rm×n

f(X) := ∥W ◦ (C − AXB)∥

diag(XT X) = 1n.
(101)

Solution algorithms for a standard ObPP, where B is an identity, are based on the

appealing feature that the objective and constraint are separable with respect to columns

of the matrix variable X ∈ Rm×n. In [98] and [14], the proposed methods separate the

problem (101) into n problems. The i-th problem (for i = 1, .., n) has the form

min
Xi∈Rm

∥Wi ◦ (Ci − AT
i Xi)∥

XT
i Xi = 1,

(102)

where Wi, Ci, Xi are i-th columns of matrices W ∈ Rp×n, C ∈ Rp×n, X ∈ Rm×n and

AT
i is an i-th row of A ∈ Rp×m. Consequently, a smooth reformulation is applied to

each problem (102), and they are solved by standard nonlinear programming methods.

However, this approach only covers problems with the l1 norm or the Frobenius norm in

the objective.

5.2.1 The proposed conic approach

In this part, the conic reformulation of the ObPP (101) is presented. The quadratic

constraint diag(XT X) = 1n can be rewritten using its representation from Table 2 to

obtain the following problem

min
X∈Rm×n,G∈Sn,V ∈Sm+n

f(X) := ∥W ◦ (C − AXB)∥

diag(G) = 1n,

V =

 Im X

XT G

 ⪰ 0,

rank(V) = m.

(103)

If the objective of (103) contains l1 norm, we apply Proposition 2.2 to get a rank-

111

constrained SDP reformulation in the form

min
X∈Rm×n,G∈Sn,V ∈Sm+n,S∈Rp×q ,t∈R

t

diag(G) = 1n,

V =

 Im X

XT G

 ⪰ 0,

rank(V) = m,

−S ≤ W ◦ (C − AXB) ≤ S,

ST 1p ≤ t1q.

(104)

If the objective of (103) is defined in terms of the l∞ norm, Proposition 2.3 can be

applied to get a rank-constrained SDP problem analogical to (104) with the last constraint

S1q ≤ t1p.

If (103) uses the Frobenius norm, the statement of Proposition 2.5 is applied to obtain

min
X∈Rm×n,G∈Sn,V ∈Sm+n,Z∈Sp

tr(Z)

diag(G) = 1n,

V =

 Im X

XT G

 ⪰ 0,

rank(V) = m, Iq (W ◦ (C − AXB))T

W ◦ (C − AXB) Z

 ⪰ 0.

(105)

In the case of the spectral norm in the objective of (103), Proposition 2.4 provides

a rank-constrained reformulation of the form

min
X∈Rm×n,G∈Sn,V ∈Sm+n,s∈R

s

diag(G) = 1n,

V =

 Im X

XT G

 ⪰ 0,

rank(V) = m, sIp W ◦ (C − AXB)

(W ◦ (C − AXB))T sIq

 ⪰ 0.

(106)

112

5.2.2 Numerical results

This section provides an overview of the numerical results obtained from solving different

types of oblique Procrustes problems (ObPPs). First, we solve standard balanced ObPPs

with either the Frobenius or l1 norm in the objective using separation methods based on

solving n problems of the form (102), as introduced in [98, 14] and included in Table 11.

Then, we compare our results with those obtained using a separation method to demon-

strate the accuracy of the proposed conic approach. Subsequently, we focus on weighted

ObPPs with various matrix norms in the objective, which include not only the Frobenius

norm and the l1 norm but also the l∞ norm and the spectral norm.

In the following experiments, we generate problems with either a zero or nonzero

optimal value. For both cases, we generate the oblique matrix using the method proposed

in [96], which involves the following procedure: Xoblique = XDiag(diag(XT X) 1
2), where

X ∈ Rm×n is a random matrix. To evaluate the feasibility of the obtained solution X, we

use the criterion ∥diag(XT X) − 1n∥1. For all experiments, we apply the algorithms from

Chapter 2 with the following inputs: ε = 10−6, δ = 0.01, ρ = 10−6, and M = 10.

5.2.2.1 Standard oblique Procrustes problems

In this section, we deal with the standard ObPPs of the form (101) where B equals the

identity. These problems have a separable structure, which allows us to compare the SDP

relaxations of the rank-constrained SDP reformulations (105) and (104) with methods

based on solving a sequence of n problems of the form (102).

Tables 25 and 26 summarize the results obtained for 100 generated ObPPs with the

l1 norm and the Frobenius norm in the objective, respectively. The results are obtained

using the SDP relaxation and a separation method based on solving (102). It is worth

noting that the rank of the block matrix V is connected to the criterion ∥diag(XT X)−1n∥1

that checks whether the solution X is oblique.

In summary, the results in Tables 25 and 26 demonstrate that the conic approach is

applicable to solve standard ObPPs. Its results are comparable to those of the separation

methods, but with significantly shorter computation time, since the SDP relaxation solves

only one optimization problem instead of n problems like in the separation method. This

highlights the effectiveness of the conic approach in solving standard ObPPs.

113

method criterion (10, 3, 20) (15, 5, 30) (20, 10, 30)

semidefinite

relaxation

∥C − AX∥1 4.6713e-10 4.4794e-10 4.5795e-10

∥diag(XT X) − 1n∥1 2.4854e-11 2.7149e-11 7.0218e-11

rank(V) 10 15 20

time (s) 0.1870 0.2141 0.3065

separation

method

∥C − AX∥1 1.8003e-09 4.1755e-09 1.1093e-08

∥diag(XT X) − 1n∥1 2.0960e-11 3.7786e-11 1.2183e-10

time (s) 0.5053 0.8450 1.6739

Table 25: Solving standard ObPPs with the l1 norm in the objective. Average values

of optimal value, orthogonality criterion, rank of the block matrix V , and computation time

obtained by the SDP relaxation of (104) and the separation method (102) to solve 100 generated

problems of size (m, n, p) with optimal value f∗ = 0.

method criterion (10, 3, 20) (15, 5, 30) (20, 10, 30)

semidefinite

relaxation

∥C − AX∥F 2.4151e-10 2.0336e-10 3.0301e-10

∥diag(XT X) − 1n∥1 2.8618e-11 2.6972e-11 6.8173e-11

rank(V) 10 15 20

time (s) 0.1757 0.2111 0.6165

separation

method

∥C − AX∥F 7.1391e-10 9.9484e-10 2.4307e-09

∥diag(XT X) − 1n∥1 2.8311e-11 3.4651e-11 1.1039e-10

time (s) 0.5161 0.8273 3.3633

Table 26: Solving standard ObPPs with the Frobenius norm in the objective. Average

values of optimal value, orthogonality criterion, rank of the block matrix V , and computation

time obtained by the SDP relaxation of (105) and the separation method (102) to solve 100

generated problems of size (m, n, p) with optimal value f∗ = 0.

5.2.2.2 Weighted oblique Procrustes problems with the Frobenius norm,

l1 norm, l∞ norm and spectral norm in the objective

When dealing with weighted ObPPs of the form (101), where A and B are not equal

to the identity, the problem loses its separable structure, rendering separation methods

114

norm criterion
SDP

relaxation

log-det

(α)

cvx.iter.

(α)

bisection

(log-det)

bisection

(cvx.iter.)

Frob.

norm

∥C − AXB∥F 2.1410 2.2327 2.1658 2.1533 2.1658

∥diag(XT X) − 1n∥1 2.6696e-01 5.6746e-08 2.1883e-08 3.6455e-06 2.1883e-08

rank(V) 5.45 4 4 4 4

time (s) 0.2624 0.5002 0.9735 37.6552 21.5325

% 10 100 100 100 100

l1

norm

∥C − AXB∥1 3.3923 3.9017 3.4994 3.4455 3.3415

∥diag(XT X) − 1n∥1 0.5372 9.6297e-09 2.8595e-09 5.2837e-07 5.2837e-07

rank(V) 7.40 4 4 4 4

time (s) 0.2318 0.4605 1.0019 14.9645 38.4616

% 5 100 100 100 100

l2

norm

∥C − AXB∥2 1.6164 2.0091 1.8257 1.6246 1.6215

∥diag(XT X) − 1n∥1 1.1270 2.6523e-08 1.5957e-08 1.0289e-05 1.3706e-07

rank(V) 7.7 4 4 4 4

time (s) 0.2337 0.4630 0.9534 15.4821 36.2344

% 0 100 100 100 100

l∞

norm

∥C − AXB∥∞ 4.9754 1.6356 1.3709 1.2757 1.3016

∥diag(XT X) − 1n∥1 4.9754 3.2818e-08 3.1357e-09 4.1862e-07 4.0443e-07

rank(V) 6.7 4 4 4 4

time (s) 0.2302 0.4459 0.9302 16.2491 36.9748

% 15 100 100 100 100

Table 27: Solving weighted ObPPs with different matrix norm in the objective.

Average values of optimal value, orthogonality criterion, rank of the block matrix V , computation

time and percentage of solutions having ε-rank equal to m = 4 obtained by the SDP relaxations

of (103), the bi-criterion versions of algorithms, labeled as (α), and the bisection algorithm

(Algorithm 4) when solving 100 generated weighted ObPPs with the Frobenius norm, l1 norm,

ł∞ norm and spectral norm in the objective of size (m, n, p, q) with optimal value f∗ ̸= 0.

unsuitable. Nevertheless, the proposed conic approach can solve these weighted problems.

Moreover, through the following series of experiments, we aim to illustrate the practicality

of the proposed conic approach in solving ObPPs with different matrix norm choices, such

as the Frobenius norm, l1 norm, l∞ norm, and spectral norm.

115

Table 27 presents a summary of the results obtained in solving generated ObPPs

of the form (101), including the usage of the SDP relaxation of the rank-constrained

SDP reformulations: (105) for the Frobenius norm, (104) for the l1 norm, and (106) for

the spectral norm. It is observed that in some cases, the SDP relaxation found a rank-4

solution. For the other cases, the bi-criterion versions of the log-det heuristic (Algorithm 1

with (65)) and the convex iteration (Algorithm 3 with (66)) were used to provide a rank-4

solution for initializing the bisection algorithm (Algorithm 4). In all cases, the optimal

solutions obtained using the proposed bisection algorithm improved the initial solutions

obtained using the bi-criterion algorithms. Additionally, for the l1 norm, l∞ norm, and

spectral norm, 70-80% of the optimal solutions were found among the optimal solutions

of the SDP relaxation. This indicates that the modified versions of the algorithms would

be sufficient to find solutions for most of the generated problems.

To conclude, the proposed conic approach can be considered a tool for solving even

weighted ObPPs (101) for any of the considered types of matrix norms.

5.3 Other types of Procrustes problems

5.3.1 Semidefinite Procrustes problems

A subclass of Procrustes problems defined over the cone of symmetric positive semidefinite

matrices is known as the semidefinite Procrustes problem (SDPP). This problem has been

studied in several works, such as [6], [50], and [62], where the authors have formulated

necessary and sufficient conditions for the optimum and compared the performance of

several numerical algorithms. For instance, in [6, Theorem 3.2], it has been shown that

X∗ is an optimal solution of the semidefinite Procrustes problem of the form

min
X∈Sn

f(X) := ∥C − AX∥F

X ⪰ 0,
(107)

if and only if X∗ ⪰ 0, ∇f(X∗) = 0, and ∇f(X∗)X∗ = 0. In [62], an algorithm for

solving the semidefinite Procrustes problem of the form (107) has been designed based on

computing the optimality conditions using specific singular value decompositions.

The SDPP is recognized in numerous applications such as structural analysis [21],

signal processing [90], and finance [73]. The problem of finding the nearest covariance

116

p\n 5 10 15 20

25 2.4077e-04 5.8795e-04 1.5706e-06 1.6701e-06

50 2.7803e-04 6.2560e-04 6.7038e-03 1.4579e-01

75 4.9439e-04 1.0880e-03 3.0394e-03 1.1802e-02

100 3.2497e-04 1.5067e-03 7.0409e-03 8.5092e-03

Table 28: Accuracy of the optimal values of SDPPs with the Frobenius norm. Average

values of the objective ∥C − AX∥F obtained by the SDP relaxation applied to 100 generated

semidefinite PPs with the Frobenius norm in the objective for different values of the parameters

p and n.

matrix can be formulated as a special case of the SDPP (107) with m = n = p and

A = Im. This problem is commonly encountered when the initial estimate of a covariance

matrix is non-positive semidefinite, which is common e.g. in foreign exchange markets

[39, 73]. Note that techniques designed for the problem of finding the nearest correlation

matrix (see Section 4.1) can be applied to solve this special case.

5.3.1.1 The proposed conic approach

Since the SDPP (107) has only a semidefinite constraint, we can rewrite the objective

using the statement of Proposition 2.5 into the form

min
X∈Sn,Z∈Sp

tr(Z)

X ⪰ 0, In (C − AX)T

C − AX Z

 ⪰ 0.

(108)

Note that besides the standard formulation of the SDPP, the conic approach can be

applied also when using other types of matrix norms in the objective of (107). If we handle

the l1, l∞ or l2 norm, after applying Proposition 2.2, Proposition 2.3, or Proposition 2.4,

respectively, we obtain reformulations (23), (25), or (27) where P = {X ∈ Sn | X ⪰ 0}

and B = In. Indeed, regardless of the type of the matrix norm defining the objective, the

SDPP (107) can be equivalently reformulated as an SDP problem and solved by interior

point methods, implemented in solvers.

117

Figure 14: Accuracy of orthogonal solutions of SDPPs with the Frobenius norm.

Average computation time (in seconds) of solving 100 generated semidefinite PPs with the

Frobenius norm in the objective for different values of the parameters p and n.

5.3.1.2 Numerical results

In this section, we summarize the results obtained from solving SDPPs of the form (107).

Since the reformulation (108) yields an SDP program, we directly used the IPMs imple-

mented in the CVX modeling system [56], [55]. Table 28 shows the behavior of the average

optimal value as the size of matrices C ∈ Rp×q and X ∈ Sn increases. Additionally, Figure

14 provides information on the average computation time with respect to the parameters

p and n.

5.3.2 Projection Procrustes problems

A projection Procrustes problem is formulated as follows

min
X∈Sn

f(X) := ∥W ◦ (C − AXB)∥

X2 = X,
(109)

where W ∈ Rp×q, C ∈ Rp×q, A ∈ Rp×n and B ∈ Rn×q are the given data.

A class of PPs defined over the set of projection matrices is not common in publications,

although it can be used in various fields, such as computer vision, machine learning, and

data analysis. For example, in [80], the k-means clustering algorithm was reformulated

with the projection matrix variable. Often, also additional linear constraints on X are

present in the problem formulation. This kind of problem arises e.g. in geometry [54].

118

5.3.2.1 The proposed conic approach

After applying Lemma 2.1, we can reformulate (109) as follows

min
X∈Sn

f(X) := ∥W ◦ (C − AXB)∥

V =

In X

X X

 ⪰ 0,

rank(V) = n.

(110)

The objective of the projection PP (101) can be reformulated in a manner similar to the

case of OPPs, as discussed in Subsection 5.1.2. Even when additional linear constraints

are imposed on the projection matrix variable, the resulting projection PP can still be

equivalently expressed as a rank-constrained SDP problem. Note that although we focus

on the orthogonal projection matrix variable X ∈ Sn, the proposed conic approach en-

compasses also problems with the non-orthogonal projection matrix variable X ∈ Rm×n

which is ensured by Theorem D.1.

5.3.2.2 Numerical results

Similarly to the previous subsection, we present the results in Table 29 and Table 30

to demonstrate that the SDP relaxation finds an optimal solution for each generated

projection PP of the form (109), regarding different values of the parameters p and n.

Furthermore, Figure 15 visually shows the increase in computation time as the values of

parameters p and n increase.

p\n 5 10 15 20

25 2.9454e-05 3.1622e-05 3.4590e-05 2.8262e-05

50 1.7348e-05 2.3380e-05 2.7099e-05 2.7412e-05

75 1.6140e-05 2.1091e-05 2.6705e-05 2.7428e-05

100 1.3999e-05 1.9272e-05 2.7378e-05 2.6619e-05

Table 29: Accuracy of the optimal values of projection PPs with the Frobenius

norm in the objective. Average values of the objective ∥C − AX∥F obtained by the SDP

relaxation applied to 100 generated problem for different values of p and n.

119

p\n 5 10 15 20

25 7.0839e-07 7.7668e-07 1.0709e-06 4.9143e-07

50 2.3967e-07 3.6361e-07 4.7086e-07 3.8615e-07

75 1.7934e-07 2.5984e-07 3.5800e-07 3.7077e-07

100 1.3548e-07 2.0522e-07 3.5962e-07 3.5351e-07

Table 30: Accuracy of projection criterion of projection PPs with the Frobenius

norm in the objective. Average values of the criterion ∥X2 − X∥F obtained by the SDP

relaxation applied to 100 generated problems for different values of p and n.

Figure 15: Computation time of projection PPs with the Frobenius norm in the ob-

jective. Average computation time (in seconds) of solving 100 generated problems for different

values of p and n.

120

Conclusion

In this thesis, we proposed a conic optimization approach for solving matrix approximation

problems in their generalized form (1). Our approach covers a broad class of problems

as we consider minimization of an objective function defined in terms of different matrix

norms, including l1, l2, l∞, and Frobenius norm, over the feasibility set described by

linear, semidefinite, quadratic, and rank constraints. Specifically, we studied standard

matrix approximation problems that involve finding the nearest (low-rank) correlation

matrix to the given empirical correlation matrix, and we also investigated various types

of Procrustes problems including orthogonal, oblique, semidefinite, and projection matrix

variables.

In Chapter 1, we introduced the generalized matrix approximation problem (1) and

presented three applications that were solved in the final part of the thesis. In Chap-

ter 2, we provided a comprehensive summary of known and lesser-known representations

of quadratic constraints using linear, semidefinite, and rank constraints (see Section 2.2

and Table 2). We derived these representations using the Schur complement proper-

ties in Lemma 2.1, Proposition 2.1, and Appendix B.4. In Section 2.3, we investigated

reformulations of norm minimization problems of the form (21), considering various ma-

trix norms defining the objective. Proposition 2.2, Proposition 2.3, and Proposition 2.4

present known reformulations of the problem (21) using l1, l∞, and l2 norms, respectively.

Additionally, Proposition 2.5 proposed a new reformulation of the problem (21) with the

Frobenius norm in the objective. We provided proofs for all the propositions and attached

the detailed derivations in Appendix B.3. It has been shown that the generalized matrix

approximation problem (1) can be equivalently reformulated as a semidefinite program

with a possible rank constraint, as summarized in Subsection 2.4.

In Chapter 3, we provided an overview of well-known algorithms for solving rank-

constrained optimization problems of the form (30). Since the convex relaxation (34)

rarely finds a low-rank solution, we discussed other algorithms designed to solve the rank-

constrained feasibility problem (36), such as the trace heuristic (39), the log-det heuris-

tic (Algorithm 1) and the convex iteration (Algorithm 3). To properly describe these

algorithms, we outlined several auxiliary statements in the appendix, including a new

121

adaptation of the proof to Theorem C.1. Furthermore, we proposed a bisection algorithm

(Algorithm 4) for solving the rank-constrained optimization problem (30). This algorithm

guarantees to find an ε-optimal solution in a finite number of iterations, given an interval

involving the optimal value and assuming the existence of reliable methods for solving

feasibility problems of the form (68), as summarized and proved in Proposition 3.1. How-

ever, since we handle only the log-det heuristic (Algorithm 1) and the convex iteration

(Algorithm 3), which are not always guaranteed to converge to a solution of the desired

rank, a solution found by the bisection algorithm (Algorithm 4) is considered only an ap-

proximation of the optimal solution to the rank-constrained optimization problem (30).

Finally, we modified the log-det heuristic (Algorithm 1) and the convex iteration (Al-

gorithm 3) to search for a low-rank solution among the optimal solutions of the convex

relaxation (34), as explained in Section 3.3.3.

In Chapter 4, we demonstrated the applicability of the proposed conic optimization

approach to solve real-life problems of finding the nearest correlation matrix (3) and the

nearest low-rank correlation matrix (4) to the given empirical correlation matrix. We

summarize the existing approaches for solving these problems in Section 4.1, and provide

a (rank-constrained) SDP reformulation for both problems in the forms (78) and (80). In

numerical experiments, we first solved Example 1.1 in Subsection 4.4.1 to illustrate the

performance of the proposed approach, even in the case of the problem with the partially

specified target. We then solved a set of generated problems of the form (3) to validate our

results by comparing them with existing methods, as shown in Table 5. Additionally, we

applied the proposed approach to rank-constrained problems of the form (4) to evaluate

the performance of the bisection algorithm (Algorithm 4), which successfully found a good

approximation of an optimal solution, as presented in Table 9.

In Chapter 5, we focus on solving various types of Procrustes problems and present

the (rank-constrained) SDP reformulation of specific subclasses, including orthogonal,

oblique, semidefinite and projection Procrustes problems. Table 11 illustrates the hetero-

geneity of methods designed specifically for particular subclasses and highlights some of

the subclasses that lack an existing solution method. Our proposed unified framework

for solving Procrustes problems is a significant contribution, as it covers all subclasses,

including the challenging ones, where existing methods are limited in their applicability.

122

We demonstrated the correctness of our results in solving balanced orthogonal Procrustes

problems of the form (85) for which the explicit solution (89) is known, as outlined in Sub-

section 5.1.3.1 and 5.1.3.2. To demonstrate the applicability of our proposed approach, we

performed feature extraction for the Yale data set. As shown in Table 16, our proposed

approach was slower than the OLSR algorithm [107]. However, as mentioned in [107],

the l1 norm is more appropriate for this application, as it is robust to outliers. Therefore,

the proposed approach is a valuable alternative for solving unbalanced Procrustes prob-

lems with the l1 norm, where the only existing method is a time-consuming differential

approach [97]. Table 17 summarizes the comparison of the conic optimization approach

with two existing methods. Although the proposed conic approach may not be as effective

as existing methods tailored for specific subclasses of problems, it offers the advantage of

applicability to a wider range of Procrustes problems. For example, it can handle weighted

orthogonal Procrustes problems with the l1, l2, or l∞ norm in the objective (see Tables

19, 20, and 21), weighted oblique Procrustes problems (see Table 27), and orthogonal

Procrustes problems with additional linear constraints (see Tables 22 and 23). Finally,

we applied the conic approach to solve the graph isomorphism problem, which we formu-

lated as a two-sided orthogonal Procrustes problem of the form (99) and reformulated as

a rank-constrained SDP problem (100). After solving this problem for several known pairs

of isomorphic graphs, we were able to identify the corresponding permutation matrix in

all cases, as demonstrated in Table 24. This discovery highlights the applicability of our

proposed conic approach as a valuable alternative to existing methods, particularly when

dealing with specific subclasses of Procrustes problems.

To conclude, the proposed conic optimization approach offers significant benefits in

solving Procrustes problems with the l1, l2, and l∞ norm and problems with additional

linear or semidefinite constraints, where there are none or only slow solution methods.

This approach provides a unified framework for matrix approximation problems in gen-

eral, which may lead to a new perspective for analyzing these problems. Furthermore, the

proposed conic approach could be extended to solve the so-called regularized minimization

problems with the objective ∑n
i=1 ∥Li(X)∥, where Li are linear mappings and the matrix

norms can be arbitrary, such as in [61] and [59]. On the other hand, the designed bisec-

tion algorithm (Algorithm 4) for solving rank-constrained optimization problems could

123

also inspire the development of algorithms to solve rank-constrained feasibility problems

(36) that would converge to a low-rank solution. Besides applications addressed in this

thesis, the proposed conic approach can be extended to solve other real-life problems, such

as Euclidean distance matrix completion problems arising in wireless sensor networks or

multidimensional scaling [29]. Overall, the proposed conic approach and bisection algo-

rithm offer promising avenues for further research in the field of matrix approximation

and optimization.

124

References

[1] S. Ahmed and I. M. Jaimoukha. A relaxation-based approach for the orthogonal

procrustes problem with data uncertainties. In Proceedings of 2012 UKACC Inter-

national Conference on Control, pages 906–911. IEEE, 2012.

[2] F. Alizadeh. Interior point methods in semidefinite programming with applications

to combinatorial optimization. SIAM Journal on Optimization, 5, 1998.

[3] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical pro-

gramming, 95(1):3–51, 2003.

[4] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primal-dual interior-point

methods for semidefinite programming: convergence rates, stability and numerical

results. SIAM Journal on Optimization, 8(3):746–768, 1998.

[5] M. S. Andersen, J. Dahl, L. Vandenberghe, et al. Cvxopt: A python package for

convex optimization. Available at cvxopt.org, 54, 2013.

[6] L.-E. Andersson and T. Elfving. A constrained procrustes problem. SIAM Journal

on Matrix Analysis and Applications, 18(1):124–139, 1997.

[7] M. Anjos, N. Higham, P. Takouda, and H. Wolkowicz. A semidefinite program-

ming approach for the nearest correlation matrix problem. University of Waterloo,

Waterloo, Ontario, Canada, Preliminary Research Report, 2003.

[8] M. ApS. Mosek modeling cookbook, 2020.

[9] K. Axiotis and M. Sviridenko. Local search algorithms for rank-constrained convex

optimization. arXiv preprint arXiv:2101.06262, 2021.

[10] T. Bell. Global positioning system-based attitude determination and the orthogonal

procrustes problem. Journal of Guidance, Control, and Dynamics, 26(5):820–822,

2003.

[11] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization: analysis,

algorithms, and engineering applications. SIAM, 2001.

125

[12] J. Berge. The rigid orthogonal procrustes rotation problem. Psychometrika, 71:201–

205, 2006.

[13] D. Bertsimas, R. Cory-Wright, and J. Pauphilet. Mixed-projection conic opti-

mization: A new paradigm for modeling rank constraints. Operations Research,

70(6):3321–3344, 2022.

[14] C. Bogani, M. G. Gasparo, and A. Papini. A gss method for oblique l1 procrustes

problems. In Applied And Industrial Mathematics In Italy III, pages 87–98. World

Scientific, 2010.

[15] A. Bojanczyk and A. Lutoborski. The procrustes problem for orthogonal stiefel

matrices. SIAM Journal on Scientific Computing, 21, 2001.

[16] R. Borsdorf and N. J. Higham. A preconditioned newton algorithm for the nearest

correlation matrix. IMA Journal of Numerical Analysis, 30(1):94–107, 2010.

[17] R. Borsdorf, N. J. Higham, and M. Raydan. Computing a nearest correlation ma-

trix with factor structure. SIAM Journal on Matrix Analysis and Applications,

31(5):2603–2622, 2010.

[18] S. Boyd and L. V. Semidefinite programming relaxations of non-convex problems

in control and combinatorial optimization. 1999.

[19] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,

2004.

[20] A. Brace, D. Ģ atarek, and M. Musiela. The market model of interest rate dynamics.

Mathematical finance, 7(2):127–155, 1997.

[21] J. E. Brock. Optimal matrices describing linear systems. AIAA Journal, 6(7):1292–

1296, 1968.

[22] J. A. Cadzow. Signal enhancement - a composite property mapping algorithm.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(1):49–62, 1988.

[23] M. CHU and N. Trendafilov. On a differential equation approach to the weighted

orthogonal procrustes problem. Statistics and Computing, 8, 1998.

126

[24] M. T. Chu and N. T. Trendafilov. The orthogonally constrained regression revisited.

Journal of Computational and Graphical Statistics, 10(4):746–771, 2001.

[25] M. A. Cox and T. F. Cox. Multidimensional scaling. In Handbook of data visual-

ization, pages 315–347. Springer, 2008.

[26] I. I. Cplex. V12. 1: User’s manual for cplex. International Business Machines

Corporation, 46(53):157, 2009.

[27] J. Dattorro. Convex Optimization & Euclidean Distance Geometry. Meboo Pub-

lishing USA, 2011.

[28] Y. Ding, D. Ge, and H. Wolkowicz. On equivalence of semidefinite relaxations for

quadratic matrix programming. Mathematics of Operations Research, 36(1):88–104,

2011.

[29] I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli. Euclidean distance matrices:

essential theory, algorithms, and applications. IEEE Signal Processing Magazine,

32(6):12–30, 2015.

[30] I. L. Dryden and K. V. Mardia. Statistical shape analysis: with applications in R,

volume 995. John Wiley & Sons, 2016.

[31] X. Duan, J. Bai, M. Zhang, and X. Zhang. On the generalized low rank approxi-

mation of the correlation matrices arising in the asset portfolio. Linear Algebra and

its Applications, 461:1–17, 2014.

[32] C. Eckart and G. Young. The approximation of one matrix by another of lower

rank. Psychometrika, 1(3):211–218, 1936.

[33] A. Edelman, T. Arias, and S. Smith. The geometry of algorithms with orthogonality

constraints. SIAM Journal on Matrix Analysis and Applications, 20, 1998.

[34] L. Eldén and H. Park. A procrustes problem on the stiefel manifold. Numerische

Mathematik, 82(4):599–619, 1999.

[35] K. Fan. On a theorem of weyl concerning eigenvalues of linear transformations.

Proceedings of the National Academy of Sciences, 35(11):652–655, 1949.

127

[36] M. Fazel. Matrix rank minimization with applications. PhD thesis, Stanford Uni-

versity, 2002.

[37] M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application

to minimum order system approximation. volume 6, pages 4734 – 4739, 2001.

[38] M. Fazel, H. Hindi, and S. Boyd. Log-det heuristic for matrix rank minimization

with applications to hankel and euclidean distance matrices. volume 3, pages 2156

– 2162, 2003.

[39] M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system

theory. In Proceedings of the 2004 American control conference, volume 4, pages

3273–3278. IEEE, 2004.

[40] M. Fiori and G. Sapiro. On spectral properties for graph matching and graph

isomorphism problems. Information and Inference: A Journal of the IMA, 4(1):63–

76, 2015.

[41] J. Francisco and T. Martini dos Santos. Spectral projected gradient method for the

procrustes problem. Trends in Applied and Computational Mathmatics, 15:83–96,

2014.

[42] J. B. Francisco and F. S. V. Bazán. Nonmonotone algorithm for minimization

on closed sets with applications to minimization on stiefel manifolds. Journal of

Computational and Applied Mathematics, 236(10):2717–2727, 2012.

[43] A. Fu, B. Narasimhan, and S. Boyd. CVXR: An R package for disciplined convex

optimization. Journal of Statistical Software, 94(14):1–34, 2020.

[44] T. Fulová. Finding low-rank solutions in financial factor models. Proceedings of the

Conference Algoritmy, pages 161–170, 2020.

[45] T. Fulová. Searching for low-rank solutions to semidefinite problems with a special

structure. In MMEI 2021 Mathematical Methods in Economy and Industry : Book

of Abstracts and Conference Programme, pages 31–31. Slovenská akadémia vied,

Bratislava, 2021.

128

[46] T. Fulová. A conic optimization approach for solving Procrustes problems with

quadratic constraints. In ODS2022: Book of abstracts, pages 172–172. Universita

degli Studi di Firenze, Florencia, 2022.

[47] T. Fulová and M. Trnovská. Solving constrained Procrustes problems: a conic

optimization approach. submitted as arXiv preprint, 2023.

[48] M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. freeman

San Francisco, 1979.

[49] C. F. Gauß. Werke: Theoria motus corporum coelestium in sectionibus conicis solem

ambientum, volume 7. Perthes et Besser, 1809.

[50] N. Gillis and P. Sharma. A semi-analytical approach for the positive semidefinite

procrustes problem. Linear Algebra and its Applications, 540:112–137, 2018.

[51] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. Journal

of the ACM (JACM), 42(6):1115–1145, 1995.

[52] J. Gower. Multivariate analysis. ordination, multidimensional scaling and allied

topics. Handbook of Applicable Mathematics, VI.: Statistics (B), 1984.

[53] J. Gower. Properties of euclidean and non-euclidean distance matrices. Linear

Algebra and its Applications, 67:81–97, 1985.

[54] J. C. Gower and G. B. Dijksterhuis. Procrustes problems, volume 30. OUP Oxford,

2004.

[55] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In

Recent Advances in Learning and Control, pages 95–110. Springer-Verlag Limited,

2008.

[56] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,

version 2.1. http://cvxr.com/cvx, 2014.

[57] I. Grubišić and R. Pietersz. Efficient rank reduction of correlation matrices. Linear

Algebra and its Applications, 422:629–653, 2005.

129

http://cvxr.com/cvx

[58] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. https://www.

gurobi.com, 2023.

[59] E. T. Hale, W. Yin, and Y. Zhang. A fixed-point continuation method for l1-

regularized minimization with applications to compressed sensing. CAAM TR07-07,

Rice University, 43:44, 2007.

[60] N. Higham. Computing the nearest correlation matrix - a problem from finance.

IMA Journal of Numerical Analysis, 22, 2002.

[61] G. Huang, S. Noschese, and L. Reichel. Regularization matrices determined by

matrix nearness problems. Linear Algebra and its Applications, 502:41–57, 2016.

Structured Matrices: Theory and Applications.

[62] P. Jingjing, W. Qingwen, P. Zhenyun, and C. Zhencheng. Solution of symmetric

positive semidefinite procrustes problem. The Electronic Journal of Linear Algebra,

35:543–554, 2019.

[63] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-

ceedings of the sixteenth annual ACM symposium on Theory of computing, pages

302–311, 1984.

[64] E. Klerk, C. Roos, and T. Terlaky. Infeasible-start semidefinite programming algo-

rithms via self-dual embeddings, pages 215–236. 1998.

[65] M. A. Koschat and D. F. Swayne. A weighted procrustes criterion. Psychometrika,

56(2):229–239, 1991.

[66] J.-B. Lasserre and M. Anjos. Handbook of Semidefinite, Conic and Polynomial

Optimization, volume 166. 2011.

[67] A. M. Legendre. Nouvelles méthodes pour la détermination des orbites des comètes.

chez Firmin Didot, libraire pour lew mathematiques, la marine, 1806.

[68] A. Lemon, A. So, and Y. Ye. Low-rank semidefinite programming: Theory and

applications. 2:1–156, 2016.

130

https://www.gurobi.com
https://www.gurobi.com

[69] Q. Li and H.-d. Qi. A sequential semismooth newton method for the nearest low-

rank correlation matrix problem. SIAM Journal on Optimization, 21(4):1641–1666,

2011.

[70] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order

cone programming. Linear Algebra and its Applications, 284(1):193–228, 1998.

[71] The MathWorks Inc. MATLAB version: 9.6.0 (R2019a), Natick, Massachusetts,

United States, 2022.

[72] E. Million. The hadamard product. Course Notes, 3(6):1–7, 2007.

[73] A. Minabutdinov, I. Manaev, and M. Bouev. Finding the nearest covariance matrix:

the foreign exchange market case. Journal of Computational Finance, 24(2), 2018.

[74] A. Mooijaart and J. J. Commandeur. A general solution of the weighted orthonormal

procrustes problem. Psychometrika, 55(4):657–663, 1990.

[75] J. Moré and D. Sorenson. Computing a trust region step. SIAM Journal on Scientific

and Statistical Computing, 4:553 – 572, 1983.

[76] S. A. Mulaik. Foundations of factor analysis. CRC press, 2009.

[77] S. Naldi. Solving rank-constrained semidefinite programs in exact arithmetic. In

Proceedings of the ACM on International Symposium on Symbolic and Algebraic

Computation, pages 357–364, 2016.

[78] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex

programming. SIAM, 1994.

[79] P. Parrilo and S. Lall. Semidefinite programming relaxations and algebraic opti-

mization in control. European Journal of Control, 9:307–321, 2003.

[80] J. Peng and Y. Wei. Approximating k-means-type clustering via semidefinite pro-

gramming. SIAM journal on optimization, 18(1):186–205, 2007.

[81] R. Pietersz 4 and P. J. Groenen. Rank reduction of correlation matrices by ma-

jorization. Quantitative Finance, 4(6):649–662, 2004.

131

[82] H. Qi and D. Sun. A quadratically convergent newton method for computing the

nearest correlation matrix. SIAM Journal on Matrix Analysis and Applications,

28(2):360–385, 2006.

[83] Y. Qiu and A. Wang. Solving balanced procrustes problem with some constraints by

eigenvalue decomposition. J. Computational Applied Mathematics, 233:2916–2924,

2010.

[84] F. Rendl. Semidefinite relaxations for integer programming. 50 Years of Integer

Programming 1958-2008: From the Early Years to the State-of-the-Art, pages 687–

726, 2010.

[85] F. Rendl. Semidefinite relaxations for partitioning, assignment and ordering prob-

lems. Annals of Operations Research, 240:119–140, 2016.

[86] E. Schmidt. Zur theorie der linearen und nichtlinearen integralgleichungen. Math-

ematische Annalen, 63(4):433–476, 1907.

[87] P. Schönemann. A generalized solution of the orthogonal procrustes problem. Psy-

chometrika, 31:1–10, 1966.

[88] I. Söderkvist and P.-Å. Wedin. On condition numbers and algorithms for determin-

ing a rigid body movement. BIT Numerical Mathematics, 34(3):424–436, 1994.

[89] J. F. Sturm. Using sedumi 1.02, a MATLAB toolbox for optimization over sym-

metric cones. Optimization Methods and Software, 11(1-4):625–653, 1999.

[90] T. Suffridge and T. Hayden. Approximation by a hermitian positive semidefinite

toeplitz matrix. SIAM journal on matrix analysis and applications, 14(3):721–734,

1993.

[91] C. Sun and R. Dai. Rank-constrained optimization and its applications. Automatica,

82:128–136, 2017.

[92] R. Takapoui and S. Boyd. Linear programming heuristics for the graph isomorphism

problem. arXiv preprint arXiv:1611.00711, 2016.

132

[93] K. Tanioka, Y. Furotani, and S. Hiwa. Thresholding approach for low-rank corre-

lation matrix based on MM algorithm. Entropy, 24(5):579, 2022.

[94] M. J. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.

[95] K. C. Toh, M. J. Todd, and R. H. Tütüncü. Sdpt3 — a matlab software package

for semidefinite programming, version 1.3. Optimization Methods and Software,

11(1-4):545–581, 1999.

[96] N. T. Trendafilov. A continuous-time approach to the oblique procrustes problem.

Behaviormetrika, 26:167–181, 1999.

[97] N. T. Trendafilov. On the l1 procrustes problem. Future Generation Computer

Systems, 19(7):1177–1186, 2003.

[98] N. T. Trendafilov and G. Watson. The l1 oblique procrustes problem. Statistics and

Computing, 14(1):39–51, 2004.

[99] T. Viklands and P.-Å. Wedin. Algorithms for linear least squares problems on the

stiefel manifold. 2006.

[100] H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of semidefinite program-

ming. Theory, algorithms, and applications. 2000.

[101] Y. Yajima. Convex envelopes in optimization problems, pages 343–344. Springer,

Boston, 2001.

[102] Y. Ye. Interior point algorithms: theory and analysis. John Wiley & Sons, 2011.

[103] F. Zhang. Matrix theory: basic results and techniques. Springer, 2011.

[104] L. Zhang, W. H. Yang, C. Shen, and J. Ying. An eigenvalue-based method for the

unbalanced procrustes problem. SIAM Journal on Matrix Analysis and Applications,

41:957–983, 2020.

[105] Z. Zhang and K. Du. Successive projection method for solving the unbalanced

procrustes problem. Science in China Series A, 49(7):971–986, 2006.

133

[106] Z. Zhang and L. Wu. Optimal low-rank approximation to a correlation matrix.

Linear algebra and its applications, 364:161–187, 2003.

[107] H. Zhao, Z. Wang, and F. Nie. Orthogonal least squares regression for feature

extraction. Neurocomputing, 216:200–207, 2016.

134

Appendix

A Matrix theory

A.1 Positive semidefinite matrices

In the following, we present three equivalent definitions of symmetric positive semidefinite

matrices.

Definition A.1 ([8, §6]). A symmetric matrix X ∈ Sn is called positive semidefinite if

zT Xz ≥ 0, ∀z ∈ Rn.

Definition A.2 ([8, §6]). A symmetric matrix X ∈ Sn is called positive semidefinite if

λi ≥ 0, ∀i = 1, ..., n,

where λ1, ..., λn are eigenvalues of X.

Using the spectral factorization of X, we have

zT Xz = zT (
n∑

i=1
λiqiq

T
i)z =

n∑
i=1

λi(zT qi)2, ∀z ∈ Rn, (111)

where qi ∈ Rn are the orthogonal eigenvectors of X. From (111), we obtain the statement

of Definition A.2.

Definition A.3 ([8, §6]). A symmetric matrix X ∈ Sn is called positive semidefinite if it

is a Grammian matrix X = V T V for some V ∈ Rn×n.

Using the Grammian representation, we have

zT Az = zT V T V z = ∥V z∥2
2 ≥ 0, ∀z ∈ Rn. (112)

From the spectral decomposition X = QΛQT , where Λ = diag(λ1, ..., λn) and QQT = In,

we can take V = Λ 1
2 QT in Definition (A.3).

Lemma A.1 ([8, §6]). Assume X is a symmetric positive semidefinite matrix of size n.

Then it possesses these properties:

135

• The diagonal entries of X are .

• A block-diagonal matrix X = diag(X1, ..., Xp) is positive semidefinite if and only if

each block Xi (i = 1, ..., n) is positive semidefinite.

• A quadratic transformation of X given as M = BT XB, where B is a regular matrix,

is positive semidefinite if and only if X is positive semidefinite.

• Any principal submatrix of X is positive semidefinite.

• The inner product of positive semidefinite matrices is .

• The pseudo-inverse X† of X is positive semidefinite.

Lemma A.2 ([103, §6.1]). If A ⪯ B, then tr(A) ≤ tr(B).

Proof. Let A ⪯ B. From definition of Löwner ordering we have B − A ⪰ 0. Since any

positive semidefinite matrix has nonnegative diagonal elements, it holds tr(B − A) ≥ 0,

which implies tr(A) ≤ tr(B).

Lemma A.3. Let X ∈ S+ have eigenvalues λ1 ≥ ... ≥ λn ≥ 0 and r = rank(X). Then

there exists V ∈ Rm×r such that X = V V T .

Proof. Let X = QΛQT = (QΛ 1
2)(QΛ 1

2)T , where QQT = In and Λ = diag(λ1, ..., λn), be

the spectral decomposition of X. Since rank(X) = r, λr+1 = ... = λn = 0. It implies

X = V V T , where V consists of the first r columns of the matrix QΛ 1
2 .

A.2 Hadamard product

Definition A.4 ([103, §6.5]). The Hadamard product of two matrices A and B of the

size same m × n is defined to be the entrywise product

A ◦ B =


a11b11 ... a1nb11

...

am1bm1 ... amnbmn

 .

Lemma A.4 ([72]). Suppose α ∈ C, and A, B and C are m × n matrices.

Then C ◦ (A + B) = C ◦ A + C ◦ B. Furthermore, α(A ◦ B) = (αA) ◦ B = A ◦ (αB).

136

B Conic optimization

B.1 Duality in conic optimization

Definition B.1 ([19, §2.6.1]). Let K ⊆ Rn be a cone. Then the dual cone of K is defined

as the set

K∗ = {y | xT y ≥ 0, ∀x ∈ K}. (113)

If K ⊆ Rn×n we can rewrite the definition of a dual cone as follows

K∗ = {Y | tr(XT Y) ≥ 0, ∀X ∈ K}. (114)

Geometrically, Definition B.1 states that any y belongs to the dual cone K∗ if and only

if −y is the normal of a hyperplane that supports K at the origin ([19, §2.6]). Let us note

that the dual cone K∗ is always a convex cone, even if cone K is nonconvex.

The Lagrange dual of conic problem (11) can be written in the form ([27, §4.1])

max
y,s

bT y

AT y + s = c,

s ∈ K∗,

(115)

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm are the given data, and K∗ is the dual cone of K.

If the problem variable is a matrix X ∈ Rn×n, the conic problem (11) has the form

min
X∈Rn×n

tr(CT X)

tr(AiX) = bi, i = 1, ..., m,

X ∈ K,

(116)

where C, A1, ..., Am ∈ Rn×n, b ∈ Rm and K is a convex cone.

Consequently, its dual is formulated in the form

max
y∈Rm,S∈K

bT y
m∑

i=1
yiAi + S = C,

S ∈ K∗,

(117)

where C, A1, ..., Am ∈ Rn×n, b ∈ Rm are the given data and K∗ is the dual cone of K.

137

The orthant, the positive semidefinite cone, and the second-order cone are self-dual

cones, i.e., K = K∗ (see [19, §2.6]). This property ensures optimization over the same

cone in primal and dual problems, enabling the application of the same techniques to

solve both. However, it does not hold, in general. For example, if we take the l1-norm

cone, its dual is the l∞-norm cone, and the dual cone of the copositive cone is the cone of

completely positive matrices. In such cases, both cones must be analyzed.

B.2 Eigenvalue optimization

Proposition B.1 ([8, §6.2]). Let X be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥

... ≥ λn. Then the largest eigenvalue can be characterized in epigraph form λ1 ≤ t as

tIn − X ⪰ 0.

Proof. Let X = QΛQT be a spectral decomposition of X where QT Q = In and Λ =

diag(λ1, ..., λn). Then λ1 ≤ t if and only if QT (tIn − X)Q = tIn − Λ ⪰ 0.

Proposition B.2 ([8, §6.2]). Let X be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥

... ≥ λn. Then the smallest eigenvalue can be characterized in hypograph form λn ≥ t as

X − tIn ⪰ 0.

Proof. Let X = QΛQT be a spectral decomposition of X where QT Q = In and Λ =

diag(λ1, ..., λn). Then λn ≥ t if and only if QT (tIn − X)Q = tIn − Λ ⪯ 0.

Analogical approaches can be used to model the eigenvalue spread λ1 − λm and the

spectral radius ρ(X) = max
i

|λi|. Below, we present characterizations of the sum of the

largest k eigenvalues and the sum of the smallest n−k eigenvalues of X. Before proceeding,

we recall several auxiliary statements.

Lemma B.1 ([35]). Let λ1 ≥ ... ≥ λk ≥ ... ≥ λn be eigenvalues of matrix X ∈ Sn. Then

a)
k∑

i=1
λi = sup{tr(V T XV) | V ∈ Rn×k, V T V = Ik}. (118)

b)
n∑

i=k+1
λi = inf{tr(V T XV) | V ∈ Rn×(n−k), V T V = In−k}. (119)

138

Proposition B.3 ([2, §4.1]). Let X be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥

... ≥ λn. Then the sum of its k largest eigenvalues can be characterized as the optimal

value of the semidefinite program

λ1 + ... + λk = max
U∈Sn

tr(XU)

tr(U) = k,

0 ⪯ U ⪯ In.

(120)

Proof. Lemma B.1a) enables to express the sum of k largest eigenvalues as a supremum

(118). If we set U = Ṽ Ṽ T , where 0 ⪯ Ṽ Ṽ T ⪯ In and tr(Ṽ Ṽ T) = k, we obtain the

problem in the form (120).

Proposition B.3 offers a way to find the sum of the k largest eigenvalues of a symmetric

matrix as a solution of a semidefinite program. Similarly, we can also express the sum of

the n − k smallest eigenvalues, as stated in Proposition B.4.

Proposition B.4. Let X be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn.

Then the sum of its n − k smallest eigenvalues can be characterized as the optimal value

of the semidefinite program

λk+1 + ... + λn = min
U∈Sn

tr(XU)

tr(U) = n − k,

0 ⪯ U ⪯ In.

(121)

Proof. Lemma B.1b) enables to express the sum of n − k smallest eigenvalues as an

infimum (119). If we set U = Ṽ Ṽ T , where 0 ⪯ Ṽ Ṽ T ⪯ In and tr(Ṽ Ṽ T) = n − k, we

obtain the problem in the form (121).

B.3 Transformations of norm minimization problems

The l1 norm

Consider the problem (21) with the l1 norm in the objective, that is,

min f(X) := ∥L(X)∥1

X ∈ P .
(22)

139

Using the definition of the l1 norm, also known as the max-column-sum norm, we can

rewrite (22) into the form
min max

1≤j≤q

∑p
i=1 | L(X)ij |

X ∈ P .
(122)

Introducing a new variable t ∈ R, we obtain an equivalent problem to (122):

min t

X ∈ P ,∑p
i=1 | L(X)ij | ≤ t.

(123)

To deal with the sum of absolute values in the last constraint of (123), we introduce a new

matrix variable S ∈ Rp×q and obtain the reformulation of (123) in the form

min t

X ∈ P ,

−Sij ≤ L(X)ij ≤ Sij, ∀i = 1, ..., p, ∀j = 1, ..., q,∑p
i=1 Sij ≤ t ∀j = 1, ..., q.

(124)

Assuming that the sign "≤" stands for a component-wise inequality, a compact notation

of (124) can be formulated as

min t

X ∈ P ,

−S ≤ L(X) ≤ S,

ST 1p ≤ t1q.

(23)

The derived result is summarized in Lemma 2.2.

The spectral norm

Consider the problem (21) with the spectral norm in the objective:

min f(X) := ∥L(X)∥2

X ∈ P .
(26)

If we define the variable s ∈ R and apply the epigraph transformation, the problem

(26) can be equivalently rewritten as

min s

X ∈ P

∥L(X)∥2 ≤ s.

(125)

140

After using the definition of the spectral norm ∥Y ∥2 = σmax(Y) where σmax stands for

the largest singular value of Y , the last constraint of (125) can be expressed as

σmax

(
L(X)

)
≤ s.

Consequently, we rewrite this constraint as

λmax(L(X)T L(X)) ≤ s2,

λmin(s2Iq − L(X)T L(X)) ≥ 0,

where λmax denotes the largest eigenvalue and λmin the smallest eigenvalue of the parti-

cular matrix. It follows that problem (125) can be rewritten as the problem

min s

X ∈ P

s2I − L(X)T L(X) ⪰ 0.

(27)

The result is presented in Lemma 2.4.

The Frobenius norm

Consider the problem (21) with the Frobenius norm in the objective:

min f(X) := ∥L(X)∥F

X ∈ P .
(28)

Using Frobenius norm definition ∥Y ∥2 =
√

tr(Y Y T) and monotone increasing trans-

formation, the objective of (28) can be rewritten as

∥L(X)∥2
F = tr

(
L(X)L(X)T

)
.

After introducing a new variable Z ∈ Rp×p such that

Z ⪰ L(X)L(X)T ,

we can apply Lemma A.2 to obtain an upper bound on the squared objective

tr(Z) ≥ tr
(

L(X)L(X)T
)

= ∥L(X)∥2
F .

As a result, the problem (28) can be reformulated as

min tr(Z)

X ∈ P

Z ⪰ L(X)L(X)T .

(29)

This derived result is summarized in Lemma 2.5.

141

B.4 Representations of nonconvex quadratic constraints

Lemma B.2. Let X ∈ Rm×n, G ∈ Sn and Y ∈ Sn. Then the following constraints are

equivalent:

i) XT X ⪰ G,

ii) Y − G ⪰ 0 ∧ XT X = Y .

Proof. Let XT X ⪰ G and define Y = XT X. It follows that Y ⪰ G. Reversely, if Y ⪰ G

and XT X = Y then XT X ⪰ G.

Note that if Lemma 2.1 is applied to the nonconvex quadratic representation XT X =

Y in the statement ii) of Lemma B.2, we obtain the representation of the nonconvex

quadratic constraint XT X ⪰ G from Table 2.

Lemma B.3. Let X ∈ Rm×n, G ∈ Sn, and g ∈ R. Then the following constraints are

equivalent:

i) tr(XT X) ≤ g,

ii) G ⪰ XT X ∧ tr(G) ≤ g.

Proof. Let tr(XT X) ≤ g and define G = XT X. Then, tr(G) = tr(XT X) implying

tr(G) ≤ g. Reversely, if tr(G) ≤ g and G ⪰ XT X, then, according to Lemma A.2,

tr(XT X) ≤ tr(G) ≤ g.

Lemma B.4. Let X ∈ Rm×n, G ∈ Sn, and g ∈ R. Then the following constraints are

equivalent:

i) tr(XT X) ≥ g,

ii) G = XT X ∧ tr(G) ≤ g.

Proof. Let tr(XT X) ≥ g and define G = XT X. Then, tr(G) = tr(XT X) implying

tr(G) ≥ g. Reversely, if tr(G) ≥ g and G = XT X, then tr(XT X) ≥ g according to

Lemma A.2.

142

If Lemma 2.1 is applied to the nonconvex quadratic representation tr(XT X) ≤ g in the

statement ii) of Lemma B.3 and on tr(XT X) ≥ g from ii) of Lemma B.4, we obtain the

representations of the nonconvex quadratic constraints tr(XT X) ≤ g and tr(XT X) ≥ g

from Table 2. Analogically, we can obtain a representation of tr(XT X) = g.

Lemma B.5. Let X ∈ Rm×n, G ∈ Sn, and h ∈ Rn. Then the following constraints are

equivalent:

i) diag(XT X) ≤ h,

ii) G = XT X ∧ diag(G) ≤ h.

Proof. Let diag(XT X) ≤ h and define G = XT X. Then, diag(G) = diag(XT X) implying

diag(G) ≤ h. Reversely, if diag(G) ≤ h and G = XT X, then diag(XT X) ≤ h.

If Lemma 2.1 is applied to the nonconvex quadratic representation diag(XT X) ≤ h in

the statement ii) of Lemma B.5, we obtain the representation of the nonconvex quadratic

constraint diag(XT X) ≤ h from Table 2. Analogically, we can obtain representations of

diag(XT X) = h and diag(XT X) ≥ h.

143

C Convex envelope of the rank function

C.1 Definition of the convex envelope

Definition C.1 ([101]). Let f : C → R, where C ⊆ Rn. The function cenv f is a convex

envelope of the function f on the set C, if

i) cenv f is a convex function,

ii) cenv f(x) ≤ f(x), ∀x ∈ C,

iii) for any convex function φ(x) such that φ(x) ≤ f(x) ∀x holds φ(x) ≤ cenv f(x) ∀x.

In other words, the convex envelope of the function f is such a convex function cenv f ,

which is the pointwise closest to the function f among all convex functions minorizing f .

An illustration of the convex envelope of the function f is shown in Figure 16. We can

also see that the epigraph of the convex envelope is the smallest convex set that includes

the epigraph of the given function f ([19, §3]).

Figure 16: Illustration of the convex envelope of the function f .

C.2 Trace as the convex envelope of the rank function

Theorem C.1 ([37]). The convex envelope of the function rank(X) on the set

U1 = {X ∈ Sn
+ | 0 ⪯ X ⪯ In} (126)

is the function tr(X), that is,

cenv rank(X) = tr(X). (127)

144

Figure 17: Illustration of the matrix trace as the convex envelope of the rank.

Intersection points denote projection matrices, for which we have rank(X) = tr(X).

The proof of Theorem C.1 was introduced in [37] for a general X ∈ Rm×n and is based

on the known convex optimization result that the conjugate of the conjugate function

is the convex envelope of the given function f , i.e., f ∗∗ = cenv f ([37]). Regarding only

the case of symmetric positive semidefinite matrices, we propose this proof only using

the convex envelope definition (Definition C.1). We recommend looking at Figure 17 to

understand the proof better.

Proof. We want to show that the trace function satisfies Definition C.1 for f(X) =

rank(X) and C = U1. Property i) is satisfied since the trace is linear in X. The

rank of a semidefinite matrix is the number of its nonzero eigenvalues, and the condi-

tion 0 ⪯ X ⪯ In ensures that λi ∈ [0, 1] ∀i. Therefore, if rank(X) = k, then tr(X) ≤ k

and property ii) is valid. It remains to show the property iii), that is, we want to prove

that if a convex function φ(X) ≤ rank(X) then φ(X) ≤ tr(X) ∀X ∈ U1. Let us proceed

with mathematical induction on the rank of the matrix. We introduce the notation Xk

for a rank-k matrix.

For k = 0, the statement is apparently true since only X = 0 comes into consideration.

For k = 1, a rank-1 matrix can be expressed as

X1 = vvT , for some vector v ̸= 0. (128)

The only nonzero eigenvalue of X1 is then λ = vT v. Since X1 ∈ U1, λ ∈ [0, 1]. Moreover,

we can construct a projection matrix P = vvT

vT v
satisfying P ⪰ 0, P = P T , P = P 2 and

145

having eigenvalues 0 or 1. Using this, we can rewrite X1 as a convex combination of the

projection matrix P and the zero matrices as follows

X1 = λ
vvT

λ
+ (1 − λ)0 = λP + (1 − λ)X0.

Then, for a convex function φ, we have

φ(X1) ≤ λφ(P) + (1 − λ)φ(X0) ≤ λrank(P) + (1 − λ)rank(X0),

where the second inequality comes from the assumption φ(X1) ≤ rank(X1). Note that

any projection matrix has the property rank(P) = tr(P). Consequently, we obtain

φ(X1) ≤ λrank(P) + (1 − λ)rank(X0) = λtr(P) + (1 − λ)tr(X0) = tr(X1).

Let us formulate the induction assumption: Let the statement be true for matrices

with a rank lower than m, i.e.

φ(Xk) ≤ rank(Xk) ⇒ φ(Xk) ≤ tr(Xk), ∀k = 0, ..., m − 1. (129)

We will show that this statement also holds for rank-m matrices.

Let λ1 ≥ ... ≥ λm be nonzero eigenvalues of matrix Xm and q1, ..., qn its corresponding

orthogonal eigenvectors. Then

Xm =
m∑

i=1
λiqiq

T
i = λ1q1q

T
1 +

m∑
i=2

λiqiq
T
i . (130)

Since 0 ⪯ Xm ⪯ In, then λ1 ∈ (0, 1] and the matrix Xm can be expressed as a convex

combination of a rank-1 matrix and a rank-(m − 1) matrix as follows

Xm = λ1q1q
T
1 + (1 − λ1)

m∑
i=2

λi

1 − λ1
qiq

T
i = λ1X

1 + (1 − λ1)Xm−1. (131)

Note that Xm−1 := ∑m
i=2

λi

1−λ1
qiq

T
i is still a matrix with rank equal to m − 1 because

multiplication by a positive constant does not affect the matrix rank.

From the convexity of function φ and the induction assumption (129), we have

φ(Xm) = φ(λ1X
1 + (1 − λ1)Xm−1) ≤ λ1φ(X1) + (1 − λ1)φ(Xm−1)

≤ λ1tr(X1) + (1 − λ1)tr(Xm−1) = tr(Xk).
(132)

146

Proposition C.1 ([36]). The convex envelope of the function rank(X) on the set

Uµ = {X ∈ Sn
+ | 0 ⪯ X ⪯ µIn, µ ∈ N} (133)

is the function 1
µ
tr(X), i.e.

cenv rank(X) = 1
µ

tr(X). (134)

Proof. Let X ∈ Uµ. Set Y = 1
µ
X. Then Y ∈ U1 and according to Theorem C.1 it holds

cenv rank(Y) = tr(Y) = tr
(

1
µ

X
)

= 1
µ

tr(X). (135)

Furthermore, since multiplication by a positive constant does not change the rank of the

matrix, we have rank(X) = rank(Y), and also cenv rank(X) = cenv rank(Y).

Proposition C.1 obviously implies that for X ∈ Uµ we have

tr(X) ≤ µ rank(X). (136)

To confirm this result, it is sufficient to realize that the eigenvalues of matrix X ∈ Uµ

satisfy

µ ≥ λ1 ≥ ... ≥ λn ≥ 0. (137)

Furthermore, the rank is equal to the number of nonzero eigenvalues, and if we handle

a rank-k matrix, we clearly get

µ ≥ λ1 ≥ ... ≥ λk > 0 = λk+1 = ... = λn. (138)

The relation (136) could be rewritten into the form

λ1 + ... + λk ≤ µ k. (139)

Obviously, the given statement holds because every nonzero eigenvalue is bounded by its

highest possible value from above.

147

D Rank minimization heuristics

D.1 Rank minimization problem with a general matrix variable

In this section, we present adjustments to be applied while minimizing the rank of a general

matrix such that we could use the trace heuristic. In the first step, the following theorem

is applied. The proof can be found in [38].

Theorem D.1 ([38]). Let X ∈ Rm×n be a given matrix. Then rank(X) ≤ r if and only

if there exist symmetric matrices Y ∈ Rm×m and Z ∈ Rn×n such that

rank(Y) + rank(Z) ≤ 2r and

 Y X

XT Z

 ⪰ 0.

Using Theorem D.1, the rank minimization problem (38) can be converted into the

form

min
X,Y,Z

1
2(rank(Y) + rank(Z)) Y X

XT Z

 ⪰ 0,

X ∈ C.

(140)

Although the problem (140) still contains the nonconvex rank function in its objective,

we can apply the trace heuristic to solve it after rewriting the objective function as follows

rank(Y) + rank(Z) = rank


Y 0

0 Z


 .

Since matrix

Y 0

0 Z

 is symmetric and positive semidefinite, we are allowed to apply the

trace heuristic here, and we obtain the objective function of the form

1
2tr


Y 0

0 Z


 = 1

2(tr(Y) + tr(Z)).

148

Finally, we solve the following semidefinite problem

min
X,Y,Z

1
2(tr(Y) + tr(Z)) Y X

XT Z

 ⪰ 0,

X ∈ C.

(141)

D.2 Concavity of the log-det function

Lemma D.1 ([19, §3.1]). Function f(X) = log det(X) is concave in X.

Proof. Let us define

g(t) = f(Z + tV), t ∈ R, V, Z ∈ Sn. (142)

We want to show that g(t) is concave in t. We have

g(t) = log det(Z + tV) = log det
(
Z

1
2 (In + tZ− 1

2 V Z− 1
2)Z 1

2
)

(143)

= log det
(
(In + tZ− 1

2 V Z− 1
2)Z

)
(144)

= log
(
det(In + tZ− 1

2 V Z− 1
2) det Z

)
(145)

= log det(In + tZ− 1
2 V Z− 1

2) + log det Z (146)

After denoting the i-th eigenvalue of matrix Z− 1
2 V Z− 1

2 by λi, we can write

g(t) = log
∏

i

(1 + tλi) + log det Z (147)

=
∑

i

log(1 + tλi) + log det Z. (148)

The first derivative of the function g with respect to t is

g′(t) =
∑

i

λi

1 + tλi

(149)

and its second derivative with respect to t has the form

g′′(t) = −
∑

i

λ2
i

(1 + tλi)2 . (150)

Since g′′(t) ≤ 0, then g is concave in t and f is concave in X.

149

D.3 Local minimization of the log-det function

The first Taylor series of the function log det(X + δIn) about Xk is given by ([38])

log det(X + δIn) ≈ log det(Xk + δIn) + tr(Xk + δIn)−1(X − Xk), (151)

where the gradient of the function log det is

▽ log det(Xk + δIn) = (Xk + δIn)−1, (152)

since

∂

∂Xij

log det(Xk + δIn) = 1
det(Xk + δIn)

∂det(Xk + δIn)
∂Xij

(153)

= 1
det(Xk + δIn)adj(Xk + δIn)ji (154)

= (Xk + δIn)−1
ji . (155)

Therefore, the minimum of the function log det(X +δIn) over the feasible set C can be

found by iterative minimization of its local linearization (151). After neglecting constants,

we obtain the iterative method from Section 3.2.2:

Xk+1 = argmin
X∈C

tr((Xk + δIn)−1X). (43)

150

	Acknowledgements
	List of Figures
	List of Tables
	List of symbols
	Introduction
	Motivation
	Conic optimization tools for norm minimization and quadratically constrained problems
	Convex optimization and conic linear programming
	Semidefinite programming

	Quadratically constrained problems
	Norm minimization problems
	Summary

	Rank-constrained optimization problems
	Convex relaxation
	Methods for solving rank-constrained feasibility problems
	Trace heuristic
	Log- heuristic
	Rank reduction algorithm
	Convex iteration as a rank reduction algorithm

	Methods for solving rank-constrained optimization problems
	Bi-criterion heuristics
	Modified heuristics
	Low-rank solutions of the convex relaxation
	Proposed bisection algorithm
	Computational aspects of the bisection algorithm

	Correlation matrix approximation
	Literature review
	SDP reformulation of the NCM problem
	SDP reformulation of the rank-constrained NCM problem
	Numerical results
	Illustrative example
	Solving the NCM problem
	Solving the rank-constrained NCM problem
	Comparison of methods for solving the rank-constrained feasibility problems
	Bisection algorithm performance
	Choice of relative weights

	Procrustes problems
	Orthogonal Procrustes problems
	Known approaches for solving OPPs
	The proposed conic approach
	Numerical results
	Application - Evaluating the accuracy of an ancient map
	Standard balanced OPPs with the Frobenius norm and the spectral norm in the objective
	Application - Feature extraction
	Standard unbalanced OPPs with the Frobenius norm in the objective
	Weighted OPPs with the Frobenius norm, l1 norm, l norm and spectral norm in the objective
	Balanced OPPs with additional linear constraints
	Extension - Graph isomorphism problem as a two-sided OPP

	Oblique Procrustes problems
	The proposed conic approach
	Numerical results
	Standard oblique Procrustes problems
	Weighted oblique Procrustes problems with the Frobenius norm, l1 norm, l norm and spectral norm in the objective

	Other types of Procrustes problems
	Semidefinite Procrustes problems
	The proposed conic approach
	Numerical results

	Projection Procrustes problems
	The proposed conic approach
	Numerical results

	Conclusion
	References
	Appendix
	Matrix theory
	Positive semidefinite matrices
	Hadamard product

	Conic optimization
	Duality in conic optimization
	Eigenvalue optimization
	Transformations of norm minimization problems
	Representations of nonconvex quadratic constraints

	Convex envelope of the rank function
	Definition of the convex envelope
	Trace as the convex envelope of the rank function

	Rank minimization heuristics
	Rank minimization problem with a general matrix variable
	Concavity of the - function
	Local minimization of the - function

